

Montage- und Betriebsanleitung 01/2023

x-change dynamic (ac) AW I Wärmepumpe

Inhalt

••	1.	Zu dieser Anleitung	4
		1.1. Verwendete Symbole	4
		1.2. Zulässiger Gebrauch	4
		1.3. Mitgeltende Dokumente	4
23	2.	Vorgaben, Normen und Vorschriften	5
23	3.	Sicherheitshinweise	5
00	4.	Transport, Verpackung und Lagerung	5
		4.1. Transport	5
		4.2. Verpackung	5
		4.3. Lieferumfang	6
		4.4. Lagerung	6
99	5.		
		5.1. Allgemeines	6
		5.2. Aufbau	
		5.3. Funktionsweise	7
		5.3.1. Heizbetrieb	
		5.3.2. Abtaubetrieb	
		5.3.3. Kühlbetrieb	
		5.4. Auslegung	9
1	6.	3	
6		6.1. Montage der Wärmepumpe	
		6.1.1. Anforderungen an den Montageort	
		6.1.2. Vorbereitung der elektrischen und hydraulischen Verbindungen	
		6.1.3. Installation der Wärmepumpe	
		6.1.4. Elektrischer Anschluss	22
,Su	7.		
6/		7.1. Vorbereitung der Heizungsanlage	
		7.2. Sonstige Prüfungen	25
99	8.		
		8.1. Betriebs- und Umgebungsbedingungen	
		8.2. Bedienung	25
22	9.	3 · · · · · · · · · · · · · · · · · · ·	
		9.1. Störungsanzeigen	26

		9.2.	Allgemeine Störungen	26
••	10. Wa	rtung		26
		10.1.	Wartung Kältekreis	26
		10.2.	Dichtheitskontrollen	26
*	11. Au	ßerbet	triebnahme/Entsorgung	27
••	12. Ted	hnisch	he Merkmale	27
		12.1.	Typenschild	27
		12.2.	Technische Daten	28
		12.3.	Angaben zur Energieeffizienz	30
			12.3.1. Effizienzdaten	30
			12.3.2. Energielabel	31
			12.3.3. Verbundeffizienzdaten	33
			12.3.4. Verbundlabel	34
		12.4.	Einsatzgrenzen	36
		12.5.	Druckverlust	36
		12.6.	Durchfluss Pufferladekreis	36
		12.7.	Geräuschpegel	36
		12.8.	Abmessungen	37
		12.9.	Leistungsparameter	38
			12.9.1. Leistungsdaten	38
			12.9.2. Teillastverhalten	40
			12.9.3. Modulationsbereich	42
		12.10	O. Angaben zur F-Gase-Verordnung	44
	13. Zul	behör.		44
		13.1.	Zubehör	44
00	14. An	hang		45
		-	EG-Konformitätserklärung	
			Hydraulikschemen	
			Klemmleistenbelegung	
			Elektroinstallationsplan	
			Elektroverdrahtungsplan	
			Elaktroschaltnläng	55

1. Zu dieser Anleitung

Diese Anleitung beschreibt die sichere und sachgerechte Montage und Inbetriebnahme der x-change® dynamic (ac) AW I Wärmepumpe.

Diese Anleitung ist Bestandteil der Anlage und muss während der Lebensdauer des Produkts aufbewahrt werden. Geben Sie die Anleitung jedem nachfolgenden Besitzer, Betreiber oder Bediener weiter.

Diese Anleitung muss in unmittelbarer Nähe der Anlage aufbewahrt werden und dem Bedien-, Wartungs- und Servicepersonal jederzeit zugänglich gemacht werden. Vor Gebrauch und vor Beginn aller Arbeiten muss die Anleitung sorgfältig gelesen und verstanden werden.

Grundvoraussetzung für sicheres Arbeiten ist die Einhaltung aller angegebenen Sicherheits- und Handlungsanweisungen in dieser Anleitung. Darüber hinaus gelten die örtlichen Unfallverhütungsvorschriften.

Information

Änderungen an technischen Details und Spezifikationen vorbehalten.

1.1. Verwendete Symbole

Signalwörter und Symbole in Sicherheitshinweisen

Mögliche Gefährdungen sind im Text dieser Anleitung durch die folgenden Signalwörter und Symbole gekennzeichnet:

Gefahr

Lebensgefahr!

Steht für eine unmittelbar drohende Gefahr, die zu schweren Verletzungen oder zum Tod führt.

Warnung

Gefährliche Situation!

Steht für eine möglicherweise gefährliche Situation, die zu schweren Verletzungen oder zum Tod führen könnte.

Hinweis

Sachschäden!

Steht für eine möglicherweise gefährliche Situation, die zu Sachschäden führen könnte.

Information

Zusätzlicher Hinweis zum Verständnis.

Symbole im Inhaltsverzeichnis

Im Inhaltsverzeichnis dieser Anleitung werden folgende Symbole verwendet:

Informationen für Nutzer/-innen.

Informationen oder Anweisungen für qualifiziertes Fachpersonal.

1.2. Zulässiger Gebrauch

Die x-change[®] dynamic (ac) AW I dient als Wärmequelle zum Erwärmen von Heizungs- und Trinkwasser. In der ac-Variante kann diese auch zum Kühlen eingesetzt werden.

Das Produkt darf nur so, wie in dieser Anleitung beschrieben, montiert, installiert und betrieben werden. Alle Hinweise in dieser Anleitung und die maximalen Einsatzgrenzen gemäß den technischen Vorgaben sind zu beachten.

Jeder andere Gebrauch ist nicht bestimmungsgemäß und daher unzulässig. Für daraus resultierende Schäden haftet alleine der Betreiber, die Gewährleistung / Garantie durch den Hersteller kann erlöschen. Ist ein Schaden aufgetreten, darf das Gerät nicht weiter betrieben werden. Eigenmächtige Veränderungen und Umbauten sind nicht erlaubt. Die Sicherheit der Anlage ist nur im Originalzustand und mit Originalzubehör gewährleistet. Verwenden Sie nur Originalersatzteile.

1.3. Mitgeltende Dokumente

Beachten Sie neben dieser Anleitung auch die entsprechenden Anleitungen vorhandener oder mitgelieferter/vorgesehener Komponenten und Anlagenteile.

2. Vorgaben, Normen und Vorschriften

- Heizungssysteme in Gebäuden: Planung von Warmwasserheizungsanlagen gemäß DIN EN 12828
- Ausdehnungsgefäße gemäß DIN 4807 Heizungsanlagen in Gebäuden
- Planungen von Heizungsanlagen mit Wärmepumpen gemäß
 DIN 15450
- Vermeidung von Schäden in Warmwasserheizungsanlagen gemäß
 VDI Richtlinien 2035 (siehe auch BDH-Informationsblatt Nr. 8)
- Heizungsanlagen und zentrale Wassererwärmungsanlagen gemäß
 DIN 18380

- Hauptpotentialausgleich von elektrischen Anlagen gemäß VDE 0105
- Beachtung des WHG (Wasserhaushaltsgesetz)
- Beachtung der (örtlich) geltenden, zutreffenden Normen, Richtlinien und Vorschriften
- Ebener und tragfähiger Untergrund
- Elektrische Kabel- und Leitungsanlagen in Gebäuden gemäß DIN 18382
- Errichten elektrischer Betriebsmittel gemäß VDE 0100
- Betrieb von elektrischen Anlagen gemäß VDE 0105

3. Sicherheitshinweise

- Eine sichere Montage und Handhabung ist nur bei vollständiger Beachtung dieser Anleitung gewährleistet.
- Die Heizungsanlage/Elektroinstallation muss von qualifiziertem Fachpersonal entsprechend dem aktuellen Stand der Technik, Gesetzen, Verordnungen, Normen und Richtlinien ordnungsgemäß installiert und in Betrieb genommen werden.
- Der elektrische Anschluss muss von qualifiziertem Fachpersonal (Elektrofachkraft) ordnungsgemäß durchgeführt werden.
- Die sicherheitstechnischen Einrichtungen sind anlagenspezifisch gemäß den technischen Richtlinien auszulegen und einzubauen.
- Die Geräte sind zugelassen bis zu einer Höhe von 2000 m über NN.
- Das Gerät kann von Kindern ab 8 Jahren und darüber sowie von Personen mit verringerten physischen, sensorischen oder mentalen Fähigkeiten oder Mangel an Erfahrung und Wissen benutzt werden,

- wenn sie beaufsichtigt oder bezüglich des sicheren Gebrauchs des Gerätes unterwiesen wurden und die daraus resultierenden Gefahren verstehen. Kinder dürfen mit dem Gerät nicht spielen. Reinigung und Benutzerwartung dürfen nicht von Kindern ohne Beaufsichtigung durchgeführt werden.
- Für Reinigungs-, und Wartungsarbeiten an der Anlage ist die elektrische Zuleitung allpolig zu unterbrechen.
- Der elektrische Anschluss muss von qualifiziertem Fachpersonal ordnungsgemäß durchgeführt werden.
- DIN VDE 0100 sowie Vorschriften der örtlichen Energieversorgungsunternehmen sind immer einzuhalten.
- Die Geräte sind zugelassen bis zu einer Höhe von 2000 m über NN.

4. Transport, Verpackung und Lagerung

4.1. Transport

Prüfen Sie die Lieferung auf Vollständigkeit und Unversehrtheit. Sollten Sie Transportschäden feststellen oder ist die Lieferung nicht vollständig, verständigen Sie Ihren Händler.

4.2. Verpackung

Für die Verpackung wurden ausschließlich umweltfreundliche Materialien verwendet. Verpackungsmaterialien sind wertvolle Rohstoffe und können wiederverwertet werden. Führen Sie deshalb die Verpackungsmaterialien dem Verwertungskreislauf zu. Wo dies nicht möglich ist, entsorgen Sie die Verpackungsmaterialien entsprechend den örtlichen Vorschriften.

4.3. Lieferumfang

Im Lieferumfang ist enthalten:

- x-change[®] dynamic (ac) AW I Wärmepumpe auf Palette in Schutzverpackung
- Wärmepumpenmanager x-center® x40 integriert
- Außentemperaturfühler
- 2 Temperaturfühler mit Tauchhülse für Puffer- und TWE-Speicher
- 1 Temperaturfühler mit Tauchhülse für Kühl-Pufferspeicher (nur ac)
- 2 Temperaturfühler mit Rohrbefestigung für Mischerkreise
- Montage- und Betriebsanleitung
- 2 flexible Anschlussschläuche G 1 1/4"
- Bedienungsanleitung für x-center® x40
- Anleitung Technikerebene für x-center® x40.

Die x-change® dynamic (ac) AW I Wärmepumpe wird rutschgesichert auf einer Transportpalette ausgeliefert und kann mit einer Transporthilfe (z.B. Hubwagen) zum Aufstellungsort transportiert werden. Die Wärmepumpe besitzt Transportvorrichtungen, welche sich im oberen Be-

reich des Kältekreisgestells befinden. Mit Hilfe der Vorrichtungen kann die Wärmepumpe, z. B. mit geeigneten Rohren, zum endgültigen Montageort getragen werden (siehe Montage).

Hinweis

Sachschaden durch Kippen der Wärmepumpe!

Übermäßiges Kippen der Wärmepumpe bei Transport und Aufstellung kann zu Schäden am Kältekreis führen.

■ Neigen Sie die Wärmepumpe nicht mehr als 45 ° in jede Richtung.

4.4. Lagerung

Lagern Sie Ihre Komponenten in der Originalverpackung unter folgenden Bedingungen:

- Nicht im Freien
- Trocken, frost- und staubfrei
- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Relative Luftfeuchtigkeit nicht höher als 60 %

5. Aufbau und Funktion

5.1. Allgemeines

Die x-change® dynamic (ac) AW I Wärmepumpe ist für umweltfreundliches und energiesparendes Heizen oder ggf. Kühlen sowie für die Trinkwassererwärmung bestimmt. Zur Gebäudebeheizung können verschiedene Heizsysteme (Heizkörper, Fußboden- und Wandheizungen oder kombinierte Systeme) verwendet werden.

Die Wärmepumpe zeichnet sich durch folgende Eigenschaften aus:

- Hohe Energieeffizienz
- Sehr niedrige Betriebsgeräusche
- Flüstermodus einstellbar
- Modulierender Betrieb (Verdichter, Lüfter, Pufferladepumpe)
- Intelligente Steuerung mit Farb-Touch-Display und vielen innovativen Funktionen sowie flexiblen Steuerungsmöglichkeiten (siehe Bedienungsanleitung des Reglers).

Für das aktive Kühlen (ac = active cooling) eignet sich ausschließlich die x-change® dynamic ac AW I.

5.2. Aufbau

Die x-change[®] dynamic (ac) AW I Wärmepumpe besteht aus einem Kältekreislauf, der die Wärme der Primäremergiequelle in Heizungswärme umwandelt. Als Primärenergiequelle dient die Außenluft.

Die Wärmepumpe wird innerhalb des Gebäudes installiert. Die Wärmepumpe besitzt je einen Luftkanal auf der Luftansaugseite und auf der Luftausblasseite. Ein Radialventilator saugt die Luft durch den Verdampfer der Wärmepumpe.

Der Kältekreislauf der Wärmepumpe besteht aus einem hermetisch geschlossenen Kreislauf mit einem modulierenden Scroll-Verdichter, der durch einen Frequenzumrichter angesteuert wird, einem Verflüssiger (Plattenwärmetauscher) und einem Verdampfer (Lamellenwärmetauscher), in dem der Zufluss des Kältemittels über ein elektronisches Expansionsventil geregelt wird. Ein Flüssigkeitsabscheider mit integrierter Wärmerückgewinnung und ein Sammler gewährleisten einen sicheren Betrieb und eine hohe Energieeffizienz der Wärmepumpe.

Als Arbeitsmittel wird das umweltfreundliche Kältemittel R410A verwendet. Die Wärmepumpe wird komplett mit Kältemittel befüllt, vollständig funktionsgetestet und betriebsbereit geliefert.

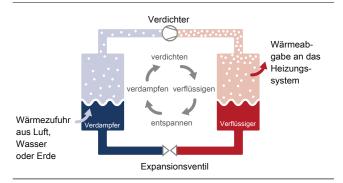
Die Bedienung erfolgt über den Regler. Auf dem innovativen Farb-Touch-Display werden die Betriebszustände der gesamten Heizanlage dargestellt. Außerdem können hier verschiedenste Einstellungen vorgenommen und benutzerdefinierte Steuerungsfunktionen erstellt werden (Szenen). Die Wärmepumpe kann problemlos im Verbund mit Gas-, Ölkesseln und Elektroheizstäben im sogenannten Bivalenzbetrieb betrieben werden.

5.3. Funktionsweise

Ein Kältekreislauf einer Wärmepumpe besteht aus folgenden fünf Hauptelementen:

- Verdichter
- Verflüssiger (Kondensator)
- Expansionsventil (Entspannungsventil)
- Verdampfer
- Arbeitsmittel.

Dem Verdampfer wird von der Wärmequelle Luft über einen Ventilator Wärmeenergie zugeführt.


Durch die Beschaffenheit des Arbeitsmittels und von dem vorherrschenden Druck im Kreislauf beginnt das Arbeitsmittel bereits bei geringen Temperaturen zu sieden und wird im Verdampfer gasförmig.

Der Verdichter komprimiert das gasförmige Arbeitsmittel. Durch die Komprimierung wird ein höheres Temperaturniveau erreicht. Zusätzlich wird die elektrische Leistungsaufnahme des Verdichters in Form von Wärme dem Arbeitsmittel beigegeben.

Im Verflüssiger wird die enthaltene Wärmeenergie des Arbeitsmittels an das Heizungssystem abgegeben. Dabei beginnt das Arbeitsmittel zu kondensieren bis es vollständig flüssig ist.

Anschließend reduziert das Entspannungsventil den Druck im Kreislauf, die Temperatur fällt ab. Nun kann das Arbeitsmittel wieder Wärmeenergie aufnehmen, der Kreislauf beginnt von Neuem.

Abb. 1: Kältekreislauf

Durch den Entzug von Wärmeenergie aus der Luft beginnt der enthaltene Wasserdampf in der Luft zu kondensieren und kann auf der Verdampferfläche zu Eisbildung führen. Deshalb findet bei Bedarf ein entsprechender Abtauvorgang in der Wärmepumpe statt. Nachfolgend sind diese unterschiedlichen Betriebsarten näher erläutert.

5.3.1. Heizbetrieb

Im Verdampfer (1) wird Kältemittel verdampft und damit Wärme aus der Umgebungsluft entnommen. Der Verdichter (4) saugt das gasförmige Kältemittel an, verdichtet und fördert es in den Verflüssiger (5). Die elektrische Energie des Verdichtermotors wird in Wärme umgewandelt, die dem Kältemittel zusätzlich zugeführt wird. Im Verflüssiger (5) kondensieren die verdichteten Kältemitteldämpfe und werden im flüssigem Zustand weiter transportiert. Die so gewonnene Wärme wird an das

Heizsystem übergeben. Das im Verflüssiger (5) kondensierte flüssige Kältemittel wird über das elektronische Expansionsventil (9) in den Verdampfer (1) geleitet, um hier erneut zu verdampfen und der gesamte Zyklus wiederholt sich.

Abb. 2: Betriebsart Heizung ohne ac

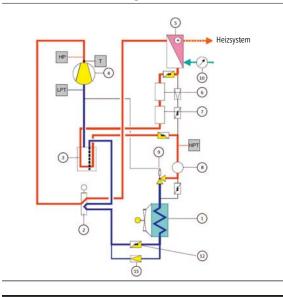
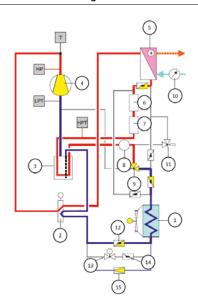
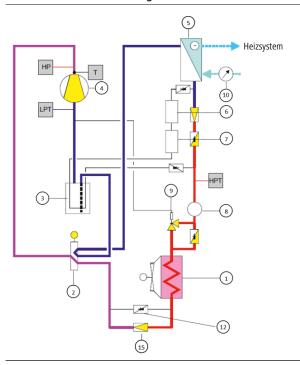
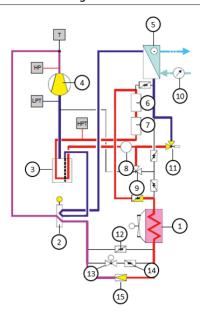



Abb. 3: Betriebsart Heizung mit ac


- 1 Verdampfer (Lamellenwärmeübertrager)
- 2 Vierwegeventil
- 3 Flüssigkeitsabscheider
- 4 Verdichter
- 5 Verflüssiger (Plattenwärmeübertrager)
- 6 Sammler
- 7 Filtertrockner
- 8 Schauglas
- 9 Elektronisches Expansionsventil
- 10 Sekundärkreislauf (Heizkreislauf) mit Durchflusssensor
- 11 Elektronisches Expansionsventil (Abtauung)
- 12 Rückschlagventil (Heizleitung)

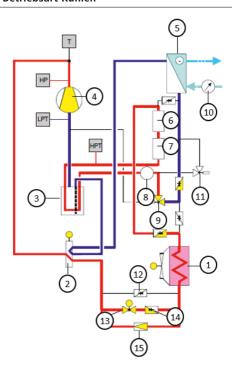
- 13 Magnetventil (Kühlleitung)
- 14 Rückschlagventil (Kühlleitung)
- 15 Drossel (Drosselleitung)


5.3.2. Abtaubetrieb

Beim Abkühlen der Luft kondensiert die Luftfeuchtigkeit an der Verdampferoberfläche, die bei niedrigen Außenlufttemperaturen auf der Wärmetauscherfläche des Verdampfers anfriert — eine Eiskruste bildet sich. Diese wird periodisch durch den Abtaubetrieb abgetaut.

Abb. 4: Betriebsart Abtauung ohne ac

Abb. 5: Betriebsart Abtauung mit ac


- 1 Verdampfer (Lamellenwärmeübertrager)
- 2 Vierwegeventil
- 3 Flüssigkeitsabscheider
- 4 Verdichter
- 5 Verflüssiger (Plattenwärmeübertrager)
- 6 Sammler
- 7 Filtertrockner
- 8 Schauglas
- 9 Elektronisches Expansionsventil
- 10 Sekundärkreislauf (Heizkreislauf) mit Durchflusssensor
- 11 Elektronisches Expansionsventil
- 12 Rückschlagventil (Heizleitung)
- 13 Magnetventil (Kühlleitung)
- 14 Rückschlagventil (Kühlleitung)
- 15 Drossel (Drosselleitung)

Der Abtauvorgang durch Kreislaufumkehr wird über das Vierwegeventil (2) gesteuert, das zwischen Rück- und Vorlauf am Verdichter umschaltet, sodass der Verflüssiger (5) als Verdampfer arbeitet und der Verdampfer (1) als Verflüssiger. Der Abtauvorgang wird von der elektronischen Steuerung der Wärmepumpe automatisch so geregelt, dass die Anlage äußerst effektiv und energiesparend arbeitet. Die Verdampferoberfläche ist mit einer speziellen wasserabweisenden Schicht versehen, wodurch das Kondenswasser von der aufgetauten Eiskruste ungehindert abfließen kann.

5.3.3. Kühlbetrieb

Die aktive Kühlung wird ähnlich dem Abtauvorgang durch Kreislaufumkehr über das Vierwegeventil (2) gesteuert, sodass der Verflüssiger (5) als Verdampfer arbeitet und der Verdampfer (1) als Verflüssiger. Somit wird am Verflüssiger (5) die Wärme aus dem Heizkreislauf entzogen, wodurch dieser abgekühlt wird und zur Raumkühlung verwendet werden kann. Die entzogene Wärme wird über den Verdampfer (1) bei aktivem Ventilatorbetrieb an die Umgebung abgegeben.

Abb. 6: Betriebsart Kühlen

- 1 Verdampfer (Lamellenwärmeübertrager)
- 2 Vierwegeventil
- 3 Flüssigkeitsabscheider
- 4 Verdichter
- 5 Verflüssiger (Plattenwärmeübertrager)
- 6 Sammler
- 7 Filtertrockner
- 8 Schauglas
- 9 Elektronisches Expansionsventil
- 10 Sekundärkreislauf (Heizkreislauf) mit Durchflusssensor
- 11 Elektronisches Expansionsventil
- 12 Rückschlagventil (Heizleitung)
- 13 Magnetventil (Kühlleitung)
- 14 Rückschlagventil (Kühlleitung)
- 15 Drossel (Drosselleitung)

5.4. Auslegung

Damit ein möglichst effizienter Betrieb der Wärmepumpe erreicht werden kann, muss die Wärmequellen- und Wärmenutzungsanlage sorgfältig ausgelegt werden. Entscheidend ist die Temperaturdifferenz zwischen Heizungswasser und Wärmequelle. Damit die Wärmepumpe möglichst effizient arbeitet, muss diese Temperaturdifferenz möglichst gering gehalten werden. Eine um 1 K höhere Temperaturdifferenz erhöht die elektrische Leistungsaufnahme um ca. 2,4 %. Deshalb eignen sich insbesondere Heizsysteme mit niedrigen Vorlauftemperaturen optimal für den Einsatz einer Wärmepumpe.

Wird die Wärmepumpe ausschließlich für die Heizwasserbereitung verwendet, so empfiehlt es sich die Wärmepumpe im Sommer zu deaktivieren, um unnötige Standbyverluste zu vermeiden.

Hinweis

Sachschaden durch falsche Handhabung!

Funktions- oder Belegreifheizen von Heizestrich kann die Anlage überfordern.

Die erhöhten Anforderungen an die Heizlast beim Funktions- oder Belegreifheizen des Heizestrichs kann eine Wärmepumpe nur begrenzt abdecken. Es sind bauseitig zusätzliche Zusatzheizgeräte, wie beispielsweise Elektroheizstäbe oder ein "Heizmobil" erforderlich. Zudem können zusätzlich Entfeuchtungs- und Trocknungsgeräte eingesetzt werden.

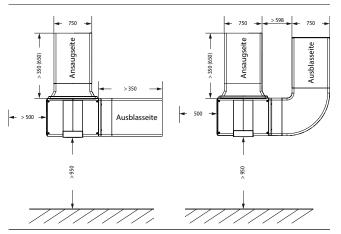
6. Montage

6.1. Montage der Wärmepumpe

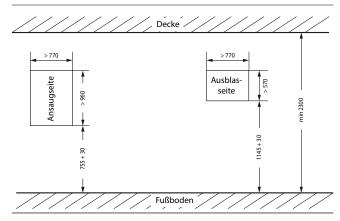
Gefahr

Gefahr durch Beschädigung von Leitungen!

Beschädigungen von Gas- oder Stromleitungen können zu schweren Verletzungen oder zum Tod führen.


Prüfen Sie vor Beginn der Arbeiten die Lage der Versorgungsleitungen für Strom, Gas und Wasser.

6.1.1. Anforderungen an den Montageort


Bei der Montage der Wärmepumpe ist folgendes zu beachten:

- Die Wärmepumpe besitzt eine Luftansaug- und eine Luftausblasseite. Die Luftausblasseite kann variabel links oder rechts angeschlossen werden.
- Der Luftzustrom und -abstrom der Wärmepumpe darf nicht behindert werden!
- Die ausgeblasene Luft ist k\u00e4lter als die Ansaugluft. Ein direktes Anblasen von Objekten kann zu Eisbildung f\u00fchren. Die Ausblasluft darf deshalb nicht auf einen Gehweg oder andere Verkehrswege str\u00f6men.
- Es ist dafür zu sorgen, dass die bereits abgekühlte Luft nicht erneut angesaugt werden kann!
- Der Montageort muss so gewählt werden, dass die Wärmepumpe allseitig zugänglich ist. Werden die Mindestabstände (siehe Mindestabstände) nicht eingehalten, kann es im Servicefall zu erhöhtem Aufwand kommen. Es muss ausreichend Platz vorhanden sein, um die Wärmepumpe mit der Heizanlage verbinden und die Stromleitungen anschließen zu können.
- Die Tragfähigkeit des Untergrunds muss sichergestellt sein.
- Eine geeignete Ableitung des anfallenden Kondensatwassers muss gewährleistest sein.

Abb. 7: Mindestabstände Draufsicht

Abb. 8: Mindestabstände Mauerdurchbrüche

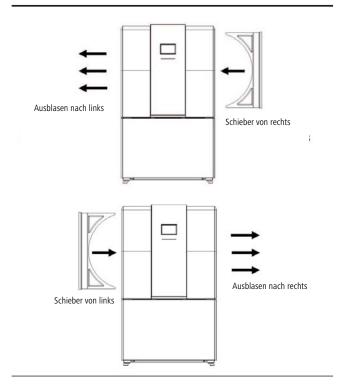
6.1.1.1. Primärkreis Luftführung

Die Mindestabstände müssen eingehalten werden, um einen problemlosen Betrieb und eine gewisse Wartungsfreundlichkeit gewährleisten zu können.

- Ansaugluftführung immer rückwärtig an der langen Seite der Wärmepumpe anschließen
- Ausblasluftführung wahlweise links oder rechts an die Wärmepumpe anschließen
- Bei einer Parallel-Montage einen Mindestabstand von 595 mm zwischen der Ansaug- und der Ausblasseite einhalten
- Bei einem Abstandsmaß < 3000 mm sind zusätzlich bauliche Maßnahmen zur Verhinderung eines Luftkurzschlusses zwischen dem Lufteintritt und Luftaustritt zu treffen
- Den maximalen Druckverlust beachten. Es wird eine maximale Gesamt-Kanallänge von 10 Meter empfohlen. Hierbei ist ein Bogen mit inbegriffen. Sollte aus baulichen Gründen eine längere Kanallänge benötigt werden, ist mit dem Hersteller Rücksprache zu halten
- Grenzwerte der TA-Lärm und den jeweiligen Vorschriften der Bundesländer und Gemeinden beachten.

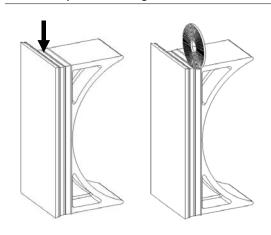
Ist die oberirdische Anordnung der Ansaug- und Ausblasöffnung nicht möglich, kann diese auch über einen Lichtschacht erfolgen. Der ausblasseitige Lichtschacht sollte mit einer schallabsorbierenden Dämmung ausgekleidet werden. Dabei muss auf geeignete Materialien geachtet werden, die resistent gegen äußerliche Einflüsse wie Nässe, Frost und UV-Strahlung sind. Der Querschnitt des Lichtschachtes ist dem erforderlichen Luftvolumenstrom anzupassen und darf keinesfalls kleiner als der vorhandene Luftschacht dimensioniert werden. Die minimale freie Tiefe des Schachtes sollte 400 mm betragen.

Die Auskleidung des Schachtes sollte so gestaltet werden, dass keine Prallflächen entstehen. Das Anbringen des Luftkanals entnehmen Sie bitte der Montage- und Betriebsanleitung Luftkanal.


01/2023

6.1.1.2. Raumluftvolumen

Die Wärmepumpe beinhaltet fluorhaltiges Kältemittel, das die menschliche Gesundheit beeinträchtigen könnte. Um bei einer Leckage des Kältemittelkreises eine Gefährdung auszuschließen, muss der Aufstellraum ein entsprechendes Luftvolumen aufweisen. Diese Angabe finden Sie bei den technischen Daten der jeweiligen Wärmepumpe. Das Raumluftvolumen ist das Raumvolumen abzüglich aller im Raum befindlichen Einbauten.


6.1.1.3. Montage des Schiebers

Die Luftausblasführung kann bei der Wärmepumpe wahlweise auf der rechten oder auf der linken Seite angeschlossen werden. Für die gegenüberliegende Seite des Luftausblaskanals ist es daher notwendig einen sogenannten "Schieber" zu montieren, welcher diese Seite luftdicht verschließt.

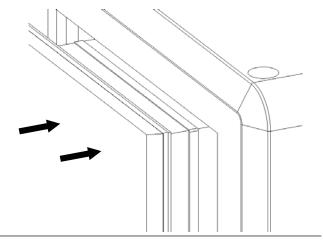
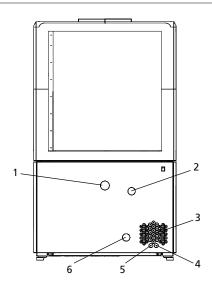

Unmittelbar vor der Montage des Schiebers ist das Kompriband in die dafür vorgesehene Nut anzubringen. Das Kompriband hilft eine luftdichte Verbindung zu schaffen.

Abb. 9: Kompriband anbringen

Anschließend wird der Schieber in die ausgewählte Seite eingeschoben, bis diese luftdicht verschlossen ist.

Abb. 10: Schieber einschieben


Hinweis

Das Kompriband ist unmittelbar vor der Schiebermontage anzubringen, da sich dieses nach weniger Zeit aufplustert und dadurch das Einschieben erschwert. Somit kann eine luftdichte Verbindung nicht mehr gewährleistet werden.

6.1.2. Vorbereitung der elektrischen und hydraulischen Verbindungen

6.1.2.1. Verbindungsleitungen zur Wärmepumpe

Abb. 11: Hydraulik- und Elektroanschlüsse auf der Rückseite

- Kondensatablauf
- Einführung eleketrische Anschlüsse
- 5 Spannungsversogung 400 V / 6 Heizungsrücklauf 50 Hz
- 2 Heizungsvorlauf
- Spannungsversorgung 230 V / 50 Hz

Bezeichnung	x-change® dynamic 8 AW I	x-change® dynamic 16 AW I
Spannungsversorgung Verdichter 400 V / 50 Hz	5 x 2,	5 mm²
Spannungsversorgung 230 V / 50 Hz	3 x 1,	5 mm²
Vor- und Rücklauf	R 1 1/	/4" AG
Kondensatablauf	Schlauch	D 60 mm
Empfohlene Installations	sdurchmesser für hydra in. Innendurchmesser)	-
C-Stahl, Kuper-, Edel- stahl-Rohre	DN 25	DN 32
Kunststoffrohre (PEX- Rohre)	DN 32	DN 40

Die Empfehlungen zur hydraulischen Verbindung gelten für einfache Verbindungslängen bis 15 m. Bei längeren Rohrverbindungen ist ggf. ein größerer Durchmesser zu wählen.

Information

Längere Anbindungsleitungen können sich beim Wärmepumpen-Startvorgang (Trinkwasserbereitung) negativ auf die Temperaturschichtung im Schichtenpufferspeicher auswirken. Dabei wird das noch nicht erwärmte Heizungswasser aus der langen Speicherladeleitung im oberen Warmwasserpufferbereich eingespeist und die Speichertemperatur verringert. Dadurch wird der Warmwasserkomfort eingeschränkt.

Empfehlung: Führen Sie die Speicherladeleitung so kurz wie möglich

Bei den Angaben zur Dimensionierung der elektrischen Leitungen handelt es sich ebenfalls um eine Hilfestellung für den Elektroinstallateur. Je nach Anwendungsfall, Einsatzgebiet, regionalen Vorschriften, Kabellänge, Verlegeart, usw. muss der Elektroinstallateur nach wie vor die Elektroinstallation selbst bestimmen.

Hinweis

Sachschaden durch zu niedrige Systemtemperaturen!

Es muss zwingend ein zusätzlicher externer Wärmeerzeuger zum sicheren Betrieb der Wärmepumpe installiert werden, um bei zu niedrigen Temperaturen im Puffer, eine ausreichende Mindesttemperatur für den Wärmepumpenbetrieb zu erzeugen. Hierfür können z. B. elektrische Heizstäbe im Puffer und Trinkwasserspeicher installiert werden. Die externen Wärmeerzeuger können automatisch aktiviert werden, wenn der Wärmepumpenbetrieb außerhalb der Betriebsgrenzen liegt oder eine Störung vorherrscht. Der externe Wärmeerzeuger kann zusätzlich bei aktivierten Komfort- betrieb automatisch aktiviert werden.

Mögliche Betriebsarten des externen Wärmeerzeugers zur Unterstützung der Wärmepumpenfunktion:

- Betriebsgrenzen der Wärmepumpe
- Komfortbetrieb (hohe System- oder TWE-Temperaturen)
- Störung der Wärmepumpe
- Bivalenter Betrieb

6.1.2.2. Heizungsseitige Verrohrung

Hinweis

Sachschaden durch falsche Handhabung!

Durch unsachgemäßes Arbeiten an den hydraulischen Leitungen und Anschlüssen kann die Wärmepumpe beschädigt werden.

 Hydraulische Montagearbeiten nur durch qualifiziertes Fachpersonal durchführen lassen.

An der tiefsten Stelle im Gebäude sind Absperrhähne, Füll- und Entleerungsvorrichtungen anzubringen, um bei einem Stromausfall oder einer längeren Außerbetriebnahme die Leitungen entleeren zu können.

Die heizungsseitige Verrohrung muss nach der entsprechenden EnEV wärmegedämmt sein. Die sicherheitstechnische Ausrüstung des Sekundärkreises erfolgt nach DIN EN 12828:

- Druckhaltesystem (MAG)
- Sicherheitsventil (SV)
- Filtereinrichtungen nach DIN EN 1717, DIN 1988-100 und DIN EN 806
- oder andere Sicherheitseinrichtungen, der jeweiligen Situation entsprechend.

Hinweis

Sachschaden durch falsche Handhabung!

Verschmutzungen im Rücklauf können zu Beschädigungen im Wärmetauscher führen.

Bauen Sie in den Rücklauf vor den Wärmeübertrager der Wärmepumpe auf der Energiequellen- und Ladekreisseite immer einen Filter oder Magnetit-Schlammabscheider ein. (Empfehlung Maschenweite < 0,6 mm)

Hinweis

Bei Kühltemperaturen unter 12 °C wird ein Glykol-Zwischenkreis benötigt. Bei der Inbetriebnahme der Wärmepumpe mit aktiver Kühlfunktion und Glykol-Zwischenkreis müssen daher Anpassungen an den Kältekreis- und Ladekreisparametern vorgenommen werden. Die Parameteranpassungen dürfen nur vom Kundendienst durchgeführt werden. Es drohen Folgeschäden am Kältekreis

6.1.2.3. Kondensatablauf

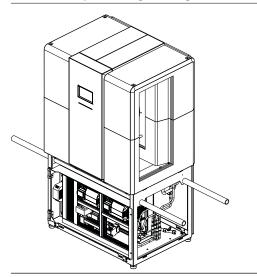
Je nach Temperatur und Feuchtigkeit der Luft fällt im Betrieb der Wärmepumpe am Verdampfer Kondensat an. Dieses muss abhängig von der Aufstellungsart (siehe Kapitel Montage) über den Kondensatwannenabfluss in ein Entwässerungsrohr abgeleitet werden.

6.1.2.4. Vorbereitung elektrischer Anschluss

Gefahr

Gefahr durch Stromschlag!

Arbeiten an spannungsführenden Komponenten können zu schweren Verletzungen oder zum Tod führen.


- Lassen Sie elektrische Anschlüsse nur von qualifiziertem Fachpersonal durchführen.
- Lassen Sie beschädigte Netzanschlusskabel nur durch qualifiziertes Fachpersonal austauschen.
- Stellen Sie sicher, dass die entsprechenden Verordnungen, Richtlinien, Normen und Gesetze beachtet werden.
- Dimensionieren Sie die Kabel und Sicherungen entsprechend den technischen Daten und der Einbausituation.
- Passen Sie die Wand- oder Bodendurchführung den örtlichen Gegebenheiten entsprechend an.

6.1.3. Installation der Wärmepumpe

6.1.3.1. Aufstellen der Wärmepumpe

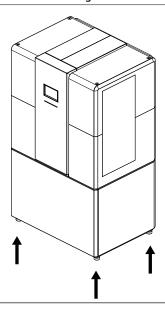

Die Wärmepumpe besitzt 4 Transportösen, welche sich oben am Gestell des Kältekreisgerüsts befinden. Mit Hilfe dieser Tranportösen kann die Wärmepumpe z. B. mit geeigneten Rohren zum endgültigen Montageort getragen werden.

Abb. 12: Transport in Längsrichtung

Nachdem die Wärmepumpe platziert wurde, muss die Wärmepumpe mithilfe der vier verstellbaren Füße waagrecht ausgerichtet werden.

Abb. 13: Waagrechte Ausrichtung mithilfe verstellbarer Füße

Warnung

Verletzungsgefahr durch Quetschung

Beim Transport oder beim Abstellen der Wärmepumpe kann es durch Unachtsamkeit zu Quetschverletzungen kommen.

6.1.3.2. Hydraulischer Anschluss

Schließen Sie die bauseits verlegten Heizungsrohre an den Vor- und Rücklauf der Wärmepumpe spannungsfrei an. Es wird empfohlen zur hydraulischen Anbindung flexible Verbindungsschläuche zur Schallund Vibrationsentkopplung zu verwenden (Zubehör).

6.1.3.3. Kondensatablauf

Das anfallende Kondensat wird über eine Kondensatwanne abgeführt, dabei ist bei der Anbindung auf folgendes zu achten:

- Binden Sie den Kondensatschlauch der Kondensatwanne durch eine Verbindungrohrleitung an ein Entwässerungsrohr ohne Siphonbogen an
- Isolieren Sie den Kondensatschlauch bei Bedarf.
- Stellen Sie sicher, dass keine direkte Verbindung zur Kanalisation besteht
- Für ein unproblematisches Ablaufen des Wassers muss die Wärmepumpe waagrecht stehen.
- Die Entwässerung muss nach DIN 1986-100 erfolgen.

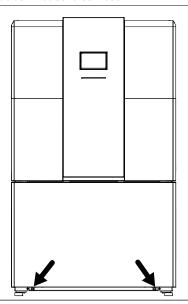
6.1.3.4. Elektrischer Anschluss

Gefahr

Gefahr durch Stromschlag!

Arbeiten an spannungsführenden Komponenten können zu schweren Verletzungen oder zum Tod führen.

- Lassen Sie elektrische Anschlüsse nur von qualifiziertem Fachpersonal durchführen.
- Lassen Sie beschädigte Netzanschlusskabel nur durch qualifiziertes Fachpersonal austauschen.
- Stellen Sie sicher, dass die entsprechenden Verordnungen, Richtlinien, Normen und Gesetze beachtet werden.


Der Netzanschluss ist in zwei Bereiche mit zwei Netzanschlussleitungen gegliedert:

- Netzanschluss Wärmepumpenregelung (~1 / 230 50 Hz) (direkte Zuleitung vom Elektroverteiler-Schrank)
- Netzanschluss Verdichter (~3 / 400 V − 50 Hz) (direkte Zuleitung vom Elektroverteiler-Schrank).

Folgende Hinweise sind zu beachten:

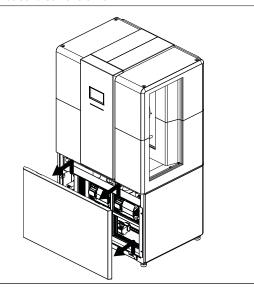

- Schließen Sie das EVU-Sperrsignal am dafür vorgesehenen Klemmenplatz an.
- Wir empfehlen, dass Sie den Netzanschluss für den Kältekreis, Regler und externe Komponenten gemeinsam absichern. Sichern Sie den Verdichter der Wärmepumpe separat ab.
- Die Mindestanforderungen an Kabelquerschnitt, Absicherung und Fl-Schutzschalter finden Sie in den Technischen Daten.
- 1. Lösen Sie die Schrauben des Abdeckblechs.

Abb. 14: Schrauben Abdeckblech lösen

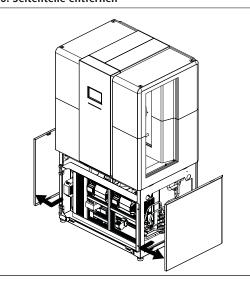

2. Entfernen Sie das Abdeckblech.

Abb. 15: Abdeckblech entfernen

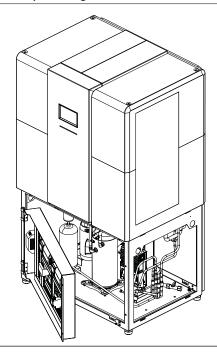
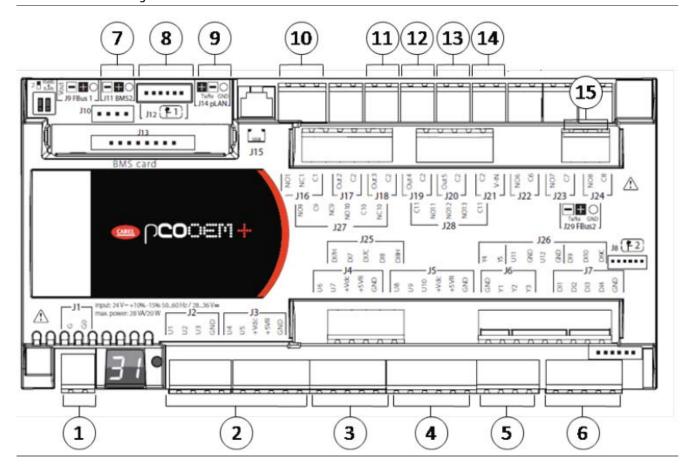

3. Entfernen Sie die Seitenteile.

Abb. 16: Seitenteile entfernen

- 4. Lösen Sie die Schrauben zur Befestigung der Elektrikplatte.
- 5. Schwenken Sie die Elektrikplatte nach links außen weg.

Abb. 17: Elektrikplatte wegschwenken

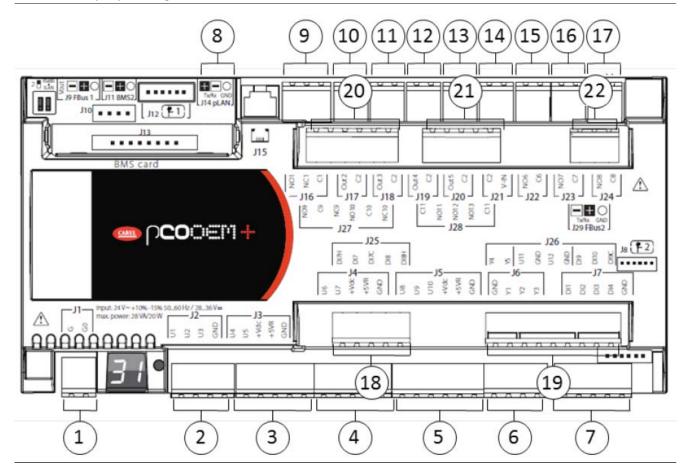


6. Führen Sie die elektrischen Versorgungsleitungen, Ansteuerungsleitungen sowie die Kabel der Temperaturfühler durch die Durchführungen auf der Rückseite der Wärmepumpe.

Am Ende der Elektroinstallation sind die seitliche sowie die vordere Abdeckung der Wärmepumpe wieder zu montieren.

Folgende Abbildung zeigt die bereits vorverdrahtete Klemmenbelegung des Kältekreismanagers in der Wärmepumpe:

Abb. 18: Kältekreismanager


Tab. 1: Klemmenbelegung Kältekreismanager

Pos	An	schlussort	Beschreibung
1	J1	G	Spannungsversorgung 24 VDC+
		G0	Spannungsversorgung 24 VDC-
2	J2/J3	U1	Niederdrucktransmitter (P11)
		GND	
		+5VR	
		U2	Sauggastemperaturfühler (NTC, B11)
		GND	
		U3	Hochdrucktransmitter (P12)
		GND	
		+5VR	
		U4	Heißgastemperaturfühler (HT-NTC, B12)
		GND	
		U5	Strömungssensor (P13)
		GND	
		+5VR	

Pos	An	schlussort	Beschreibung	
3	J4	U6	Öltemperaturfühler (HT-NTC, B13)	
		GND		
		U7	Energiequellaustritts-Temperaturfühler (NTC, B15)	
		GND	_	
4	J5	U8	Energiequelleintritts-Temperaturfühler (NTC, B14)	
		GND	_	
		U9	Vorlauftemperatur (NTC, B16)	
		DND	_	
		U10	Rücklauftemperatur (NTC, B17)	
		GND	-	
5	J6	Y1	Lüftersteuerung 0 - 10 V	
		GND	-	
6	J7	DI1	Überlastsignal Lüfter	
		GND	-	
		DI2	Alarmsignal Freuquenzumformer Power+ / Hochdruckschalter	
		GND	_	
		DI3	Allgemeiner Störeingang	
		GND		
7	J11	BMS-	Kommunikationsverbindung zum Touch-Display	
		BMS+	-	
		BMS GND	-	
8	J12		Kommunikationsverbindung zum elektronischen Expansionsventil	
9	J14	pLAN-	Kommunikationsverbindung zum Wärmepumpenmanager	
		pLAN+	_	
		pLAN GND		
10	J16	NO1	Verdichterschütz	
		C1	-	
11	J18	Out3	Ölsumpfheizung	
		C2	-	
12	J19	Out4	4-Wege-Ventil	
		C2	-	
13	J20	Out5	Lüfterversorgung	
		C2	_	
14	J21	V-IN	Spannungsversorgung für Relais J18 - J20	
		C2		
15	J29	Tx	Kommunikationsverbindung zum Frequenzumformer Power+	
		Rx		
		GND	-	

Folgende Abbildung zeigt die bereits vorverdrahtete Klemmenbelegung des Reglers:

Abb. 19: Wärmepumpenmanager

Tab. 2: Klemmenbelegung Wärmepumpenmanager

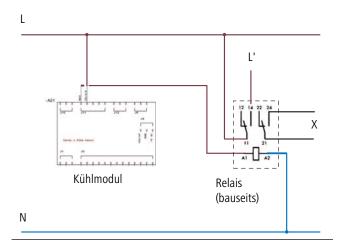
Pos.	An	schlussort	Beschreibung		
1	J1	G	Spannungsversorgung 24 VDC+		
		G0	Spannungsversorgung 24 VDC-		
2	J2	U1	Heizwasser - Temperaturfühler (NTC, B1)		
		GND			
		U2	Trinkwasser - Temperaturfühler (NTC, B2)		
		GND			
		U3	Vorlauftemperatur MK1 (NTC, B3)		
		GND			
3	J3	U4	Vorlauftemperatur MK2 (NTC, B4)		
		GND			
		U5	Stromzähler S0-Schnittstelle		
		GND			
4	J4	U6	Außentemperaturfühler (NTC, B5)		
		GND			
5	J5	U8	Universaleingang 1 (für Szenenprogrammierung verwendbar)		

Pos.	An	schlussort	Beschreibung
		GND	
		U9	Universaleingang 2 (für Szenenprogrammierung verwendbar)
		GND	-
		U10	Universaleingang 3 (für Szenenprogrammierung verwendbar)
		GND	_
6	J6	Y1	Regelsignal Pufferladepumpe
		GND	-
		Y3	Universeller Analoger Ausgang (für Szenenprogrammierung verwendbar)
		GND	-
7	J7	DI1	Überlastsignal externer Wärmeerzeuger TWE
		GND	_
		DI2	Universeller digitaler Eingang (für Szenenprogrammierung verwendbar)
		GND	-
		DI3	Überlastsignal externer Wärmeerzeuger Heizen
		GND	_
8	J14	pLAN-	Kommunikationsverbindung zum Kältekreismanager
		pLAN+	_
		pLAN GND	_
9	J16	NO1	Umschaltventil Heizen/TWE
		NC1	_
10	J17	Out2	Mischer MK2 schließen
		C2	-
11	J18	Out3	Mischer MK2 öffnen
		C2	-
12	J19	Out4	Umwälzpumpe HK
		C2	-
13	J20	Out5	Universalausgang (für Szenenprogrammierung verwendbar)
		C2	-
14	J21	V-IN	Spannungsversorgung für Relais J17 - J20
		C2	-
15	J22	NO6	Umwälzpumpe MK2
		C6	-
16	J23	NO7	Umwälzpumpe MK1
		C7	-
17	J24	NO8	Pufferladepumpe
		C8	-
18	J25	D17	Universeller digitaler Eingang (für Szenenprogrammierung verwendbar)
		24VDC+	-
		+DI7C	24VDC-

Pos.	An	schlussort	Beschreibung	
		DI8	Störsignal Pufferladepumpe	
		24VDC+		
19	J26	Y4	Universeller Analoger Ausgang (für Szenenprogrammierung verwendbar)	
		GND		
		Y5	Universeller Analoger Ausgang (für Szenenprogrammierung verwendbar)	
		GND		
		U11	Universeller Analoger Eingang (für Szenenprogrammierung verwendbar)	
		GND		
		U12	Universeller Analoger Eingang (für Szenenprogrammierung verwendbar)	
		GND		
		DI9	Smart Grid 1 - Signal / EVU-Sperre	
		24VDC+		
		+DI9C	24 V DC -	
		DI10	Smart Grid 2 - Signal	
		24VDC+		
20	J27	NO9	Ansteuerung bauseitiges Schütz KM1 (externer Wärmeerzeuger 1 (Standard TWE))	
		C9		
		NO10	Ansteuerung bauseitiges Schütz KM2 (externer Wärmeerzeuger 2 (Standard Heizen))	
		C10		
21	J28	NO11	Mischer MK1 schließen	
		C11		
		NO12	Mischer MK1 öffnen	
		C12		
		NO13	Ansteuerung bauseitiges Schütz KM3 (externer Wärmeerzeuger 3)	
		C13		
22	J29	FBus2 -	Kommunikationsverbindung zum Zusatzmodul bei Modellen mit Kühlfunktion	
		FBus2 +		
		GND		

Folgende Abbildung zeigt die bereits vorverdrahtete Klemmenbelegung des Zusatzmoduls, welches nur in der Wärmepumpe mit aktiver Kühlfunktion vorhanden ist. Das Kommunikationskabel ist am WPM J29 und am Zusatzmodul J6 angeklemmt.

Abb. 20: Zusatzmodul Kühlen



Pos.AnschlussortBeschreibung1J1GSpannungsversorgung 24 VDC+		nschlussort	Beschreibung
		G	Spannungsversorgung 24 VDC+
		G0	Spannungsversorgung 24 VDC-
2	J2	U1	Taupunktwächter MK1 (für Szenenprogrammierung verwendbar)
		U2	Taupunktwächter MK2 (für Szenenprogrammierung verwendbar)
		U3	Taupunktwächter HK (für Szenenprogrammierung verwendbar)
		U4	
		GND	
		U5	Kühlspeicher Temperaturfühler (NTC, B21)
		U6	
		GND	
		U7	Beladepumpe Kühlung Steuersignal (PWM) (falls eine separate Ladepumpe für Kühlen verwendet wird)
		U8	Change-Over - Signal Eingang MK1 (für Szenenprogrammierung verwendbar)
		U9	Change-Over - Signal Eingang MK2 (für Szenenprogrammierung verwendbar)
		U10	Change-Over - Signal Eingang HK (für Szenenprogrammierung verwendbar)
		GND	
3	J10	NO1	230 V Beladepumpe Kühlen – falls eine separate Kühlpumpe verwendet wird
		C1/2	
		NO2	
1	J11	NO3	Change-Over - Signal Ausgang MK1 (für Szenenprogrammierung verwendbar)
		C3/4/5	
		NO4	Change-Over - Signal Ausgang MK2 (für Szenenprogrammierung verwendbar)

Pos.	Anschlussort Beschreibung NO5 Change-Over - Signal Ausgang HK (für Szenenprogrammierung verwendbar)		Beschreibung	
			Change-Over - Signal Ausgang HK (für Szenenprogrammierung verwendbar)	
5 J12 NO6 3-Wege Umschaltventil Heizen/Kühlen (Für SPST Ventile, NO6=EIN=Kühlen)		3-Wege Umschaltventil Heizen/Kühlen (Für SPST Ventile, NO6=EIN=Kühlen)		
		NC6	3-Wege Umschaltventil Heizen/Kühlen (Für SPDT Ventile, NC6=EIN=Heizen, NO6=AUS)	
		C6		
6	J6	Fbus Tx/Rx-	Kommunikationsverbindung zum Wärmepumpenmanager	
		Fbus Tx/Rx+		
		Fbus GND		

Bei der Verwendung von Umschaltventilen für das Heizen und Kühlen, muss bauseits ein Zwischenrelais verbaut werden, welches die Ventile (230V) schaltet. Die Elektroinstallation wird in folgender Abbildung dargestellt.

Abb. 21: Elektroinstallation - Change Over Signal für MK1 (Kühlmodul A21-NO3)

- L' L' für das Umschaltventil Heizen/Kühlen (Gilt nur für die Umschaltventile auf der Heizungsseite)
- X potentialfreier Change-Over-Ausgang (Relais: 21 und 24)

Hinweis

Sachschaden!

Die Taupunktwächter der einzelnen Kühlkreise müssen so platziert werden, dass eventuelle Schäden durch eine Taupunktunterschreitung (Bildung von Feuchtigkeit) vermieden werden. Eine geeignete Platzierung ist abhängig vom Kühlsystem. Dies kann z. B. die Vorlaufleitung im Fußbodenverteiler bei einer Fußboden-Flächenkühlung sein.

6.1.4. Elektrischer Anschluss

Gefahr

Gefahr durch Stromschlag!

Arbeiten an spannungsführenden Komponenten können zu schweren Verletzungen oder zum Tod führen.

 Schalten Sie vor Beginn aller Arbeiten das Gerät spannungsfrei und sichern es gegen Wiedereinschalten.

Gefahr

Gefahr durch Stromschlag!

Arbeiten an spannungsführenden Komponenten können zu schweren Verletzungen oder zum Tod führen.

- Lassen Sie elektrische Anschlüsse nur von qualifiziertem Fachpersonal durchführen.
- Lassen Sie beschädigte Netzanschlusskabel nur durch qualifiziertes Fachpersonal austauschen.
- Stellen Sie sicher, dass die entsprechenden Verordnungen, Richtlinien, Normen und Gesetze beachtet werden.

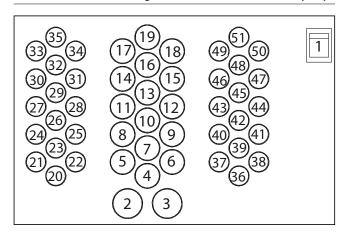
6.1.4.1. Anforderungen an den Netzanschluss

Information

Wir empfehlen, den Netzanschluss für den Kältekreis, Hauptbedienmanager und eventuell vorhandene externe Komponenten gemeinsam abzusichern.

Bitte entnehmen Sie die Anforderungen an den Kabelquerschnitt, die Absicherung und FI-Schalter den Technischen Daten der Wärmepumpe.

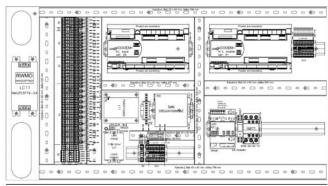
Warnung


Sachschaden durch Unterbrechung der Spannungsversorgung!

Bei Unterbrechung der Spannungsversorgung sind die Frostschutzfunktion der Wärmepumpe und die Heizkreise nicht aktiv!

6.1.4.2. Klemmenbelegung

- Öffnen Sie die vordere Abdeckung der Wärmepumpe.
- Führen Sie sämtliche Anschlusskabel (Spannungsversorgung, Wärmepumpe, Heizung, Sensoren, Fernwartung, ...) von hinten durch die Durchführung an der Gehäuserückseite der Wärmepumpe. Die Durchführungen dienen auch als Zugentlastung.
 - Die folgende Abbildung zeigt eine beispielhafte Belegung der Kabeldurchführungen.


Abb. 22: Kabeldurchführungen an der Rückseite der Wärmepumpe

- 1 Hauptschalter 230-V-Versor- 2 gung
- 3 230 V-Versorgung (vom Ver- 4
- 5 Versorgung Pufferladelapumpe
- 7 Ansteuerung bauseitiges Schütz KM2 (ext. WEZ 2)
- 9 Versorgung Umwälzpumpe
- MK1
- 11 Mischer MK1
- 13 SB-Pumpe
- 15 Reserve17 Reserve
- 19 Reserve
- 21 Trinkwasser Temperaturfühler 22
- 23 Vorlauffühler MK2
- 25 Außentemperaturfühler
- 27 Fühler SBH-SB
- 29 Überlastsignal ext. WEZ Hz
- 29 Oberiasisignal ext. WLZ
- 31 Reserve
- 35 Reserve

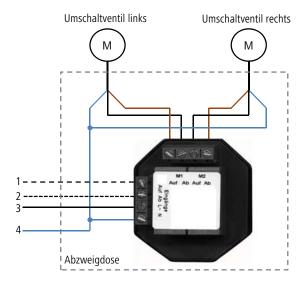
- 400 V-Versorgung (vom Vertoiler)
- Umschaltventil Heizen / TWE
- Ansteuerung bauseitiges Schütz KM1 (ext. WEZ 1)
- 8 Versorgung Umwälzpumpe MK2
- 10 Versorgung Umwälzpumpe HK
- 12 Mischer MK2
- 14 Reserve
- 16 Reserve
- 18 Reserve
- 20 Heizwasser Temperaturfühler
- 22 Vorlauffühler MK1
- 22 vorraunumer wii 24 SO-Signal
- 6 Pufferladepumpen-Steue-
- rung (PWM, 0 10 V)
- 28 Überlastsignal ext. WEZ TWE
- 30 Reserve
- 32 Störsignal Pufferladepumpe
- 33 Smart Grid 1 / EVU-Sperre 34 Smart Grid 2
- Entfernen Sie die Klemmabdeckung und schließen Sie das Anschlusskabel entsprechend dem Belegungsplan an.

Abb. 23: Ansicht Elektroinstallation

- Auf den Kabelkanälen der Klemmen befinden sich die einzelnen Zuordnungen der Klemmanschlüsse zu den jeweiligen Komponenten zur Erleichterung der Anschlussarbeiten (siehe nachfolgende Abbildung). Im Kapitel Klemmleistenbelegung ist die Klemmenbelegung detailliert aufgelistet.
- 4. Schließen Sie nach der Fertigstellung der elektrischen Installation das Wärmepumpengehäuse wieder.

i

Information


Eine detaillierte Beschreibung der Klemmleistenbelegung finden Sie im Anhang (Tabelle Klemmleistenbelegung).

Information

Bei Verwendung der Speicherladegruppe mit zwei Umschaltventilen und Trenn-Relais-Schaltung ist der elektrische Anschluss wie unten abgebildet durchzuführen.

Abb. 24: Elektroinstallationsplan Trennrelais

- X1.1
- 2 X1.2
- 3 L von X1.3 (Umwälzpumpe)
- 4 Neutralleiter

Information

Die Kabellänge der Temperatursensoren kann den Messwert verfälschen, die maximale Kabellänge beträgt daher 100 m.

Information

Sind an einem Heizkreis Heizflächen angeschlossen, die in der maximalen Betriebstemperatur begrenzt sind, wie Fußboden- und Wandheizungen, muss ein Sicherheitsthermostat bei einer Übertemperatur die Umwälzpumpe abschalten.

6.1.4.3. Außentemperaturfühler

Der Außenlufttemperaturfühler ist an der kältesten Seite des Gebäudes zu montieren, in Mitteleuropa ist das in der Regel die Nord- bzw. Nord-West-Seite. Er darf keiner direkten Sonneneinstrahlung ausgesetzt sein, eine Montage in Mauernischen oder einer anderen geschützten Lage ist zu vermeiden. Ebenso sollte die Montage in der Nähe von Fenstern, Türen oder Öffnungen von haustechnischen Einrichtungen vermieden werden, denn ausströmende Luft kann den Sensor beeinflussen.

Die Montagehöhe beträgt ca. 2/3 der Fassadenhöhe von Gebäuden mit bis zu drei Stockwerken, bei größeren Gebäuden wird der Sensor zwischen den 2. und 3. Stockwerk über Erdgleiche montiert.

7. Inbetriebnahme

Hinweis

Sachschaden durch unqualifiziertes Personal!

Unsachgemäße Anschlüsse und Installation können zur Beschädigung oder Fehlfunktion der Anlage führen.

- Lassen Sie die Inbetriebnahme nur von qualifiziertem Fachpersonal durchführen.
- Lassen Sie das Inbetriebnahme-Formular vom Inbetriebnehmer vollständig ausfüllen und unterschreiben.

Information

Bei einer unsachgemäßen Installation bzw. Inbetriebnahme erlischt jegliche Gewährleistung und Garantie.

Warnung

Verletzungsgefahr durch heiße und kalte Rohrleitungen

Beachten Sie, dass die Kältekreisrohrleitungen sowohl während des Betriebs als auch nach dem Betrieb sehr hohe Temperaturen (Heißgasleitung) und sehr niedrige Temperaturen (Sauggasleitung) annehmen können. Beim Berühren der Leitungen kann es somit zu Verletzungen kommen!

- Halten Sie ausreichend Abstand.
- Tragen Sie ggf. Schutzhandschuhe.

7.1. Vorbereitung der Heizungsanlage

- Vor der Inbetriebnahme die Heizungsanlage spülen um Rückstände und aggressive Medien in der Heizungsanlage zu vermeiden.
- Bereiten Sie das zu befüllende Wasser für die Heizungsanlage gemäß
 VDI 2035 auf.
- Beachten Sie bei der Befüllung des Trinkwassers DIN EN 1717 und DIN 1988 und ÖNORM H5195 (Teil 1).
- Entlüften Sie die Heizungsanlage vollständig.
- Stellen Sie sicher, dass alle Sicherheitseinrichtungen ordnungsgemäß funktionieren.
- Prüfen Sie die Anlage auf Dichtigkeit und führen Sie eine Druckprobe durch
- Stellen Sie sicher, dass die Anlage vollständig elektrifiziert ist und dass der Potentialausgleich angeschlossen ist.

Hinweis

Bei unzureichend isolierten Zirkulationsleitungen kann es zu einer erhöhten Wärmeabnahme und damit zu einer insgesamt reduzierten Systemeffizienz kommen.

Füll- und Ergänzungswasser

Als Füll- bzw. Ergänzungswasser kann nach VDI 2035 Trinkwasser verwendet werden. Für dieses gelten zwingend die in Richtwerte für das Füll- und Ergänzungswasser sowie das Heizwasser aufgeführten Anforderungen. Ob diese Vorgaben erfüllt sind, ist von qualifiziertem Fachpersonal zu überprüfen. Analysewerte des örtlichen Wasserversorgers helfen zusätzlich bei der Beurteilung der Wasserqualität.

Tab. 4: Richtwerte laut Norm

Füll- und Ergänzungswasser sowie Heizwasser, heizleistungsabhängig

Gesamtheizleistung in kW	Gesamthärte in °dH		
-	Spezifisch	nes Anlagenvolum Heizleistung	en in l/kW
-	≤ 20	> 20 bis ≤ 40	> 40
≤ 50 kW	keine	≤ 16,8	< 0,3
bei spez. Wasserinhalt des Wär-			
meerzeugers von ≥ 0,3 l/kW			
≤ 50 kW	≤ 16,8	≤ 8,4	< 0,3
bei spez. Wasserinhalt des Wär-			
meerzeugers von < 0,3 l/kW			

Heizwasser, heizleistungsunabhängig

Betriebsweise	Elektrische Leitfähigkeit in μS/cm	
salzarm	> 10 bis ≤ 100	
salzhaltig	> 100 bis ≤ 1500	
Werkstoffe in der Anlage	pH-Wert*	
ohne Aluminiumlegierungen	8,2 bis 10,0	
mit Aluminiumlegierungen	8,2 bis 9,0	

*Eine Messung des pH-Werts sofort nach Inbetriebnahme ist nicht sinnvoll. Sie sollte im Rahmen der nächsten jährlichen Wartung erfolgen, frühestens jedoch nach zehn Wochen Heizbetrieb. Werden die Richtwerte für das Füll-, Ergänzungs- und Kreislaufwasser überschritten bzw. nicht eingehalten, muss eine Wasseraufbereitung erfolgen. Bevorzugte Verfahren zur Wasseraufbereitung sind Enthärtung oder Entsalzung. Dabei werden die im Wasser enthaltenen Calcium- und Magnesiumionen oder alle als Ionen vorliegenden Stoffe entfernt.

Eine Wasserbehandlung durch Zugabe von Chemikalien soll auf Ausnahmen beschränkt sein. Die VDI 2035 Blatt 1 fordert unter Punkt 8.4.1 sogar, dass alle Wasserbehandlungsmaßnahmen im Anlagenbuch zu begründen und dokumentieren sind. Es wird darüber hinaus empfohlen, zusätzlich zur Dokumentation im Anlagenbuch jede Wasserbehandlung auch an der Anlage kenntlich zu machen.

7.2. Sonstige Prüfungen

Sind die Punkte des Inbetriebnahme-Formulars nicht erfüllt, ist der sichere Betrieb der Wärmepumpe nicht gewährleistet.

Stellen Sie deshalb sicher, dass:

- die Wärmepumpe korrekt montiert ist
- alle Anschlüsse korrekt ausgeführt sind
- alle Absperrarmaturen im Heizsystem, die den korrekten Fluss des Wassers behindern könnten, geöffnet sind
- alle Ein- und Ausgänge korrekt angeschlossen sind
- alle Verkleidungselemente richtig montiert sind.

Hinweis

Bei der Inbetriebnahme ist eine min. Systemtemperatur von 20 °C einzuhalten.

8. Betrieb

8.1. Betriebs- und Umgebungsbedingungen

- Minimale Lufttemperatur von -20 °C bei einer Wasser-Vorlauftemperatur von 50 °C.
- Die Betriebsbedingungen und Einsatzgrenzen der Wärmepumpe sind in den Technischen Daten hinterlegt.

Warnung

Gefährliche Situation durch brennbare Gase oder Dämpfe!

Der Betrieb der Wärmepumpe in der Umgebung von brennbaren Gasen oder Dämpfen kann zu schweren Verletzungen oder zum Tod führen.

- Betreiben oder platzieren Sie die Wärmepumpe nie an Orten an denen Explosionsgefahr besteht oder an denen sich brennbare Gase und Dämpfe befinden.
- Nehmen Sie die Wärmepumpe durch Abschalten der Hauptstromzufuhr außer Betrieb, bevor Sie Arbeiten durchführen (Kleben, Lackieren usw.), bei denen brennbare Gase oder Dämpfe entstehen können.

Information

Vermeiden Sie unnötig hohe Vorlauftemperaturen. Je niedriger die Temperaturdifferenz zwischen Vorlauf- und Quellentemperatur (Luft) ist, umso effizienter kann die Anlage betrieben werden.

8.2. Bedienung

Die Bedienung und Regelung der x-change® dynamic (ac) AW I Wärmepumpe erfolgt über das Bedienteil des Wärmepumpenmanagers (siehe separate Anleitung x-center® x40 Regler).

9. Störungen und Behebung

Gefahr

Gefahr durch Stromschlag!

Arbeiten an spannungsführenden Komponenten können zu schweren Verletzungen oder zum Tod führen.

Schalten Sie vor Beginn aller Arbeiten das Gerät spannungsfrei und sichern es gegen Wiedereinschalten.

Gefahr

Gefahr durch Stromschlag!

Arbeiten an elektronischen Gegenständen dürfen nur von qualifiziertem Fachpersonal durchgeführt werden.

9.1. Störungsanzeigen

Störungen an der Wärmepumpe werden im Display des Wärmepumpenmanagers angezeigt. Verständigen Sie bitte den Kundendienst, falls die Störung nicht selbst behoben werden kann.

9.2. Allgemeine Störungen

Eine Übersichtsliste der möglichen Störungen und Behebungsmaßnahmen finden Sie in der x-center® x40 Technikeranleitung.

10. Wartung

Die Wärmepumpe kann nahezu wartungsfrei betrieben werden. Lediglich folgende Punkte sollten beachtet werden:

- Versprühen Sie in der Nähe der Wärmepumpe keine chemischen Stoffe! Diese enthaltenen womöglich aggressive Chemikalien welche die Oberfläche der Anlage angreifen können. Sollten Sie dennoch solche Mittel versprühen, ist die Wärmepumpe vorher auszuschalten und die Oberfläche gründlich abzudecken!
- Halten Sie die Anlage sauber. Reinigen Sie die Bedienelemente nur mit einem feuchten Tuch. Verwenden Sie auf keinen Fall chemische Reinigungs- oder Scheuermittel.

Intervall	Prüfung	Behebung
Jährlich	Sichtprüfung des Verdampfers auf Ablagerungen und Beschädigungen	Verdampfer reinigen / reparieren
	Sichtprüfung des Kondensatablaufs	Kondensatablauf reinigen (Versicke- rung)
	Sichtprüfung des Schmutzfängers auf Ablagerung und Verschmutzung im Rücklauf der Beladeseite	Schmutzfänger rei- nigen

Tab. 5: Wartungsintervalle

Intervall	Prüfung	Behebung
Halbjähr- lich	Sichtprüfung des Ventilators auf Beschädigung an Schaufeln und Gehäuse	Ventilator ersetzen
	Sichtprüfung der Befestigung der Anschlussleitungen des Ventilators	Anschlussleitun- gen befestigen
	Sichtprüfung der Befestigung des Schutzleiteranschluss des Ventilators	Schutzleiteran- schluss befestigen
	Sichtprüfung der Isolierung der Leitungen des Ventilators auf Beschädigung	Leitungen austau- schen
	Sichtprüfung des Ventilators auf Ver- schleiß und Ablagerungen	Laufrad reinigen / Ventilator austau- schen

10.1. Wartung Kältekreis

Der Kältekreis der Wärmepumpe ist prinzipiell wartungsfrei.

10.2. Dichtheitskontrollen

Die F-Gase Verordnung schreibt bei einem hermetisch geschlossenen Kältekreis und einem CO₂-Aquivalent ab 10 Tonnen eine jährliche Dichtheitskontrolle und das Führen eines Anlagenbuchs vor. Dies ist für alle Modelle der x-change® dynamic (ac) AW I Wärmepumpe erforderlich. Dichtheitskontrolle und sonstige Arbeiten am Kältekreis dürfen ausschließlich von einem zertifizierten Fachbetrieb gemäß der aktuellen Chemikalien-Klimaschutzverordnung durchgeführt werden. Die ausführende Person muss eine persönliche Zertifizierung nach der aktuellen Chemikalien-Klimaschutzverodrnung vorweisen.

11. Außerbetriebnahme/Entsorgung

Außerbetriebnahme

- Trennen Sie die Anlage vom Stromnetz und sichern Sie die Anlage gegen Wiedereinschalten.
- Lassen Sie die Anlage abkühlen und machen Sie diese drucklos.
- Gegebenenfalls Trennen und Entleeren Sie die Anlage.

Entsorgung

- Führen Sie ausgediente Komponenten mit Zubehör und Verpackung dem Recycling oder der ordnungsgemäßen Entsorgung zu. Beachten Sie dabei die örtlichen Vorschriften.
- Die Anlage gehört nicht in den Hausmüll. Mit einer ordnungsgemäßen Entsorgung werden Umweltschäden und eine Gefährdung der persönlichen Gesundheit vermieden.

12. Technische Merkmale

12.1. Typenschild

Auf dem Typenschild befinden sich die Produkt- und CE-Kennzeichnung sowie technische Angaben.

Abb. 25: Typenschild x-change® dynamic 16 AW I

Kermi GmbH Pankofen-Bahnhof 1 D-94447 Plattling www.kermi.de

Gerätedaten

Type x-change dynamic	16 AW I	Version		
Serialnummer W20347-00-0	0-00000	Produktionsnummer 0000000		
Norm EN14825		Kältemittel R410A (CH2F2-CF3CHF2		
Gewicht 285 kg		Treibhauspotential (GWF	2088	
max. Betriebsstrom (I-max)	18,6 A	Füllmenge	7,4 kg	
1. El. Anschluss 3N ~ 400 V	20 A	Gesamt 15,45 t/CO ₂ Äq		
2. El. Anschluss ~ 230 V	10 A	Betriebsdruck(Kältekreis)	Max. 42 bar	
Schutzart IP2X		Betriebsdruck(Sekundarseite	0,3-6 bar	
		Max Vorlauftemo	63 °C	

Leistungsdaten

Bertiebspunkt	A2W35	Bertiebspunkt	A7W35
Heizleistung	8,76 kW	Heizleistung	6,08 kW
Kälteleistung	6,94 kW	Kälteleistung	5,00 kW
Aufnahmeleistung	2,08 kW	Aufnahmeleistung	1,24 kW
COP	4.21	COP	4.91

Hermetisch geschlossener Kältekreis Hermetically sealed refrigerant circuit

Enthält vom Kyoto-Protokoll erfasste fluorierte Treibhausgase Contains fluorinated greenhouse gases covered by the Kyoto Protocol

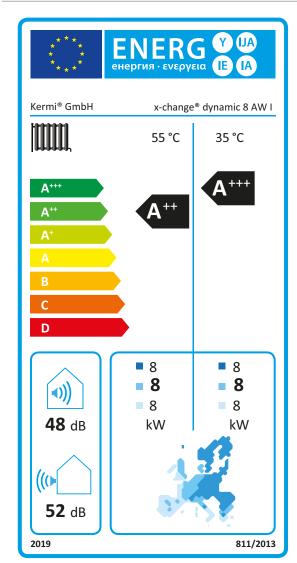
12.2. Technische Daten

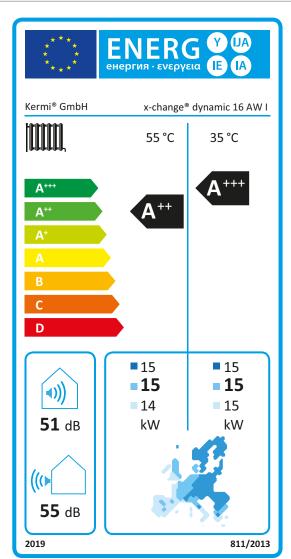
		x-change	® dynamic	x-change®	dynamic ac
Typ- und Verkaufsbezeichnung		8 AW I	16 AW I	8 AW I	16 AW I
Artikelnummer		W20346	W20347	W20348	W20349
Leistungsbereich bei A7/W35	kW	4,5-10	8,5-16	4,5-10	8,5-16
Leistungsbereich bei A2/W35	kW	4 - 10	7 - 16	4 - 10	7 - 16
Leistungsbereich bei A-7/W35	kW	3,5-10	6-15	3,5-10	6-15
Leistungsdaten nach EN 14511:2014 A	7/W35, 5K				
Verdichterdrehzahl	rps	25	20	25	20
Nennwärmeleistung	kW	4,91	6,08	4,91	6,08
Elektrische Leistungsaufnahme	kW	0,99	1,24	0,99	1,24
Leistungszahl (COP)		4,95	4,91	4,95	4,91
Kälteleistung	kW	3,92	4,84	3,92	4,84
Leistungsdaten nach EN 14511:2014 AZ	2/W35				
Verdichterdrehzahl	rps	34	33	34	33
Nennwärmeleistung	kW	5,69	8,76	5,69	8,76
Elektrische Leistungsaufnahme	kW	1,38	2,08	1,38	2,08
Leistungszahl (COP)		4,12	4,21	4,12	4,21
Kälteleistung	kW	4,31	6,68	4,31	6,68
Leistungsdaten nach EN 14511:2014 A-	7/W35				
Verdichterdrehzahl	rps	50	64	50	64
Nennwärmeleistung	kW	6,55	12,69	6,55	12,69
Elektrische Leistungsaufnahme	kW	2,12	4,15	2,12	4,15
Leistungszahl (COP)		3,09	3,05	3,09	3,05
Kälteleistung	kW	4,43	8,54	4,43	8,54
eistungsdaten n. EN 14511:2014 A35	' W7				
Nennkühlleistung / EER	kW / -	-	-	7,0 / 3,5	10 / 2,3
Leistungsbereich	kW	-	-	5,0 - 9,0	5 - 14
Leistungsdaten n. EN 14511:2014 A35 /	W18				
Nennkühlleistung / EER	kW / -	-	-	8,0 / 4,8	10,5 / 2,9
Leistungsbereich	kW	-	-	6,5 - 11,5	6,5 - 16,5
Energiequelle					
Temperaturbereich	° C		-20 b	is +35	
/entilatortyp		Rac	dial, modulierender EC	C-Motor mit Absenkbet	rieb
Abtauart			Kreislau	ıfumkehr	
Max. ext. Pressung	Pa	140	180	140	180
Max. Luftdurchsatz	m³/h	3700	4800	3700	4800
Ladekreislauf					
Min. Volumenstrom bei A2/W35	m³/h	0,7	1,3	0,7	1,3
Nennvolumenstrom bei A2/W35	m³/h	1,0	1,5	1,0	1,5

		x-change® dynamic		x-change® dynamic ac	
Typ- und Verkaufsbezeichnung		8 AW I	16 AW I	8 AW I	16 AW I
Artikelnummer	2 :	W20346	W20347	W20348	W20349
Min. Volumenstrom (Abtauung)	m³/h	1,5	1,8	1,5	1,8
Max. Vorlauftemperatur (zwischen -5 °C und 20 ' C Energiequelleneintrittstemperatur)	° °C		6	3	
Volumenstrom bei Volllast	m³/h	2,0	3,0	2,0	3,0
Max. Betriebsdruck	bar		(5	
Anschluss			R 1 1	/4 AG	
Wärmemengenzähler			Elektronisc	h integriert	
Kältekreislauf					
Kältemittel			R4	10A	
Kältemittelfüllmenge	kg	6	7,4	10,4	11,9
Verdichtertyp / Leistungsregelung / Verdichteran- zahl			Scroll / Freuque	nzumformer / 1	
Min. benötigtes Raumluftvolumen	m³	15,4	19,0	26,7	30,6
Elektrische Anschlusswerte Wärmepumpe					
Nennspannung Verdichter	V		40	00	
Phasen / Frequenz			3 / 5	0 Hz	
Max. Nennstrom Verdichter	А	13,3	18,6	13,3	18,6
Max. Leistung Verdichter (A-10/W55)	kW	4,8	8,6	4,8	8,6
Anlaufstrom	А	5,4	4,8	5,4	4,8
Empfohlene Absicherung Verdichter		C 16 A (3 pol.)	C 20 A (3 pol.)	C 16 A (3 pol.)	C 20 A (3 pol.
Empfohlener FI-Schutzschalter			300 m	A Тур В	
Empfohlener min. Kabelquerschnitt Verdichterzu- leitung	mm ²		5 x	2,5	
Schutzart			IP.	2X	
Elektrische Anschlusswerte Regelung					
Nennspannung Regelung	V		23	30	
Phasen / Frequenz			1 / 5	0 Hz	
Empfohlene Absicherung			B 1	0 A	
Empfohlener FI-Schutzschalter			Тур	o B	
Schalldaten nach EN 12102 und EN ISO 9614	l-2				
Außenmessung (A7/W55)	dB (A)	51,8 bei 30 rps	54,8 bei 25 rps	51,8 bei 30 rps	54,8 bei 25 rp
Absenkbetrieb (A7/W55)	dB (A)	47,6 bei 30 rps	50,6 bei 25 rps	47,6 bei 30 rps	50,6 bei 25 rp
Innenmessung (A7/W55)	dB (A)	48 bei 30 rps	51 bei 25 rps	48 bei 30 rps	51 bei 25 rps
Abmessungen und Gewicht					
Breite	mm	1045	1045	1045	1045
Tiefe	mm	770	770	770	770
Höhe	mm	1770	1770	1770	1770
Gewicht	kg	263	285	268	290

12.3. Angaben zur Energieeffizienz

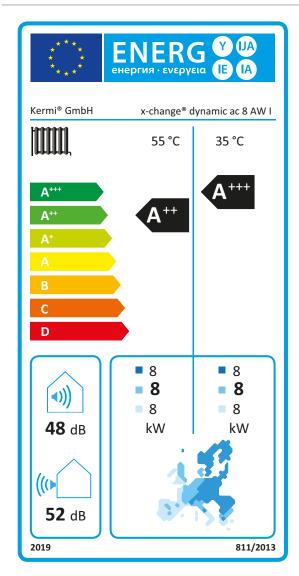
12.3.1. Effizienzdaten

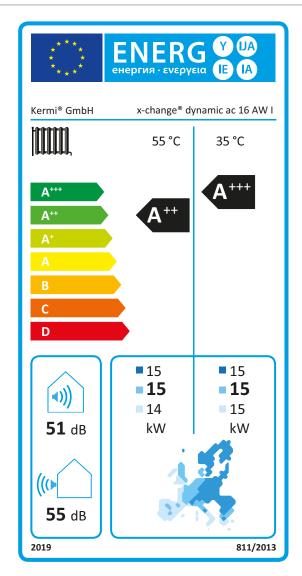

			x-change® o	dynamic (ac)
Typ- und Verkaufsbezeichnung Artikelnummer			8 AW I W20346 W20348	16 AW I W20347 W20349
Effizienzdaten für durchschnittliche Klimaverhält	nisse (nach DIN	EN 14825)		
Klasse für die jahreszeitabhängige Raumheizungs-Ene	r-	MT ¹⁾	A++	A++
gieeffizienz	_	NT ²⁾	A+++	A+++
Wärmeleistung	kW	MT ¹⁾	8	15
	_	NT ²⁾	8	15
Jahreszeitliche Raumheizungs-Energeieffizienz	%	MT ¹⁾	137	140
	_	NT ²⁾	189	191
Jährlicher Energieverbrauch	kWh	MT ¹⁾	4713	8923
	_	NT ²⁾	3440	6448
SCOP		MT ¹⁾	3,51	3,57
	_	NT ²⁾	4,81	4,85
Schallleistungspegel (innen)	dB(A)		48	51
Schallleistungspegel (außen)	dB(A)		52	55
Effizienzdaten für kältere Klimaverhältnisse (nac	h DIN EN 14825)			
Wärmeleistung	kW	MT ¹⁾	8	15
	-	NT ²⁾	8	15
Jahreszeitliche Raumheizungs-Energeieffizienz	%	MT ¹⁾	122	127
	-	NT ²⁾	160	160
Jährlicher Energieverbrauch	kWh	MT ¹⁾	6303	11499
	-	NT ²⁾	4848	9079
SCOP		MT ¹⁾	3,13	3,24
	-	NT ²⁾	4,07	4,07
Effizienzdaten für wärmere Klimaverhältnisse (na	ach DIN EN 1482	15)		
Wärmeleistung	kW	MT ¹⁾	8	15
	_	NT ²⁾	8	14
Jahreszeitliche Raumheizungs-Energeieffizienz	%	MT ¹⁾	164	167
	_	NT ²⁾	238	244
Jährlicher Energieverbrauch	kWh	MT ¹⁾	2581	4613
	_	NT ²⁾	1776	3059
SCOP		MT ¹⁾	4,17	4,24
	_	NT ²⁾	6,01	6,19


 $^{^{1)}}$ MT - Mitteltemperatur-Anwendung bei 55 °C-Vorlauftemperatur

 $^{^{\}rm 2)}$ NT - Mitteltemperatur-Anwendung bei 35 °C-Vorlauftemperatur

12.3.2. Energielabel


x-change [®] dynamic				
8 AW I	16 AW I			
W20346	W20347			

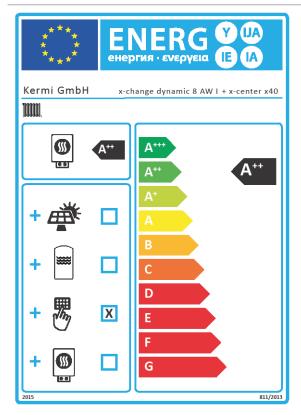


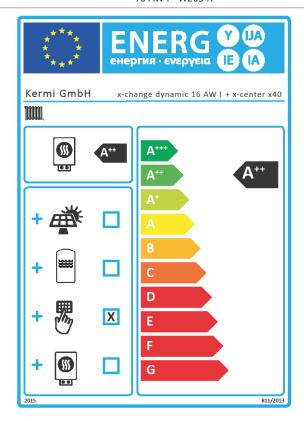
Der Download der Energielabel ist unter www.kermi.de im Download-center verfügbar.

x-change [®] dynamic ac				
8 AW I	16 AW I			
W20348	W20349			

Der Download der Energielabel ist unter www.kermi.de im Downloadcenter verfügbar.

12.3.3. Verbundeffizienzdaten

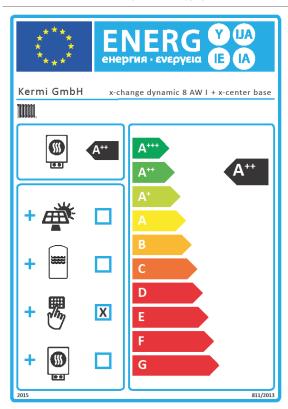

		x-change® (dynamic (ac)
Typ- und Verkaufsbezeichnung Artikelnummer		8 AW I W20346 W20348	16 AW I W20347 W20349
x-center® x40			
Jahreszeitliche Raumheizungs-Energieeffizienz bei durchschnittlichen Klimaver- hältnissen jeweils für Mitteltemperaturanwendungen	%	137	140
Klasse für die jahreszeitabhängige Raumheizungs-Energieeffizienz bei durch- schnittlichen Klimaverhältnissen jeweils für Mitteltemperaturanwendungen		A++	A++
Klasse des Temperaturreglers		II	II
Beitrag des Temperaturreglers zur Raumheizungs-Energieeffizienz	%	2	2
Raumheizungs-Energieeffizienz der Verbundanlage bei durchschnittlichen Klima- verhältnissen	%	139	142
Raumheizungs-Energieeffizienz der Verbundanlage bei kälteren Klimaverhältnis- sen	%	124	129
Raumheizungs-Energieeffizienz der Verbundanlage bei wärmeren Klimaverhält- nissen	%	166	169
Wert der Differenz zwischen der Raumheizungs-Energieeffizienz bei durch- schnittlichen Klimaverhältnissen und derjenigen bei kälteren Klimaverhältnissen	%	15	13
Wert der Differenz zwischen der Raumheizungs-Energieeffizienz bei wärmeren Klimaverhältnissen und derjenigen bei durchschnittlichen Klimaverhältnissen	%	27	27
Raumheizungs-Energieeffizienzklasse der Verbundanlage bei durchschnittlichen Klimaverhältnissen		A++	A++
x-center® base			
Jahreszeitliche Raumheizungs-Energieeffizienz bei durchschnittlichen Klimaver- hältnissen jeweils für Mitteltemperaturanwendungen	%	137	140
Klasse für die jahreszeitabhängige Raumheizungs-Energieeffizienz bei durch- schnittlichen Klimaverhältnissen jeweils für Mitteltemperaturanwendungen		A++	A++
Klasse des Temperaturreglers		VI	VI
Beitrag des Temperaturreglers zur Raumheizungs-Energieeffizienz	%	4	4
Raumheizungs-Energieeffizienz der Verbundanlage bei durchschnittlichen Klima- verhältnissen	%	141	144
Raumheizungs-Energieeffizienz der Verbundanlage bei kälteren Klimaverhältnis- sen	%	126	131
Raumheizungs-Energieeffizienz der Verbundanlage bei wärmeren Klimaverhält- nissen	%	168	171
Wert der Differenz zwischen der Raumheizungs-Energieeffizienz bei durch- schnittlichen Klimaverhältnissen und derjenigen bei kälteren Klimaverhältnissen	%	15	13
Wert der Differenz zwischen der Raumheizungs-Energieeffizienz bei wärmeren Klimaverhältnissen und derjenigen bei durchschnittlichen Klimaverhältnissen	%	27	27
Raumheizungs-Energieeffizienzklasse der Verbundanlage bei durchschnittlichen Klimaverhältnissen		A++	A++

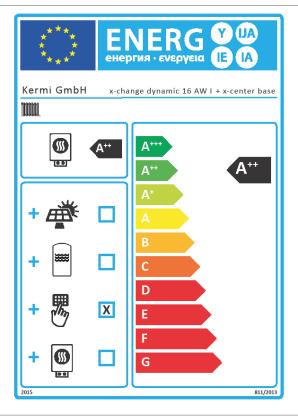

12.3.4. Verbundlabel

x-change® dynamic + x-center® x40

8 AW I - W20346

16 AW I - W20347

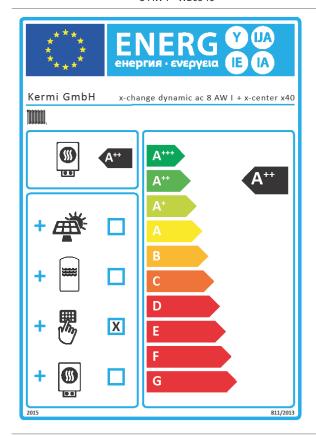


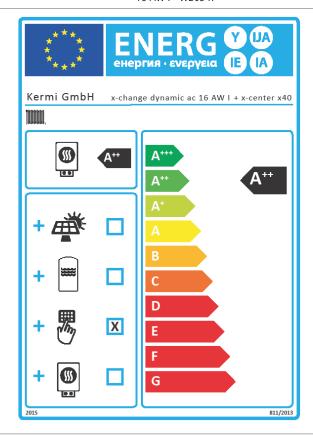


x-change® dynamic + x-center® base

8 AW I - W20348

16 AW I - W20349

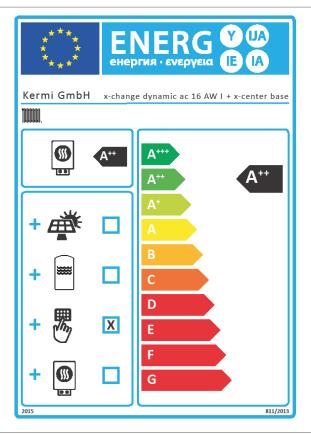




x-change® dynamic ac + x-center® x40

8 AW I - W20346

16 AW I - W20347



x-change® dynamic ac + x-center® base

8 AW I - W20348

16 AW I - W20349

12.4. Einsatzgrenzen

Abb. 26: Einsatzgrenzen Heizen

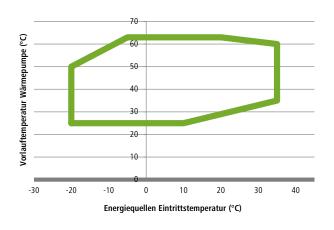
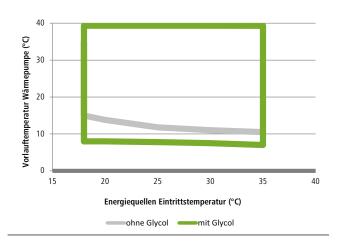
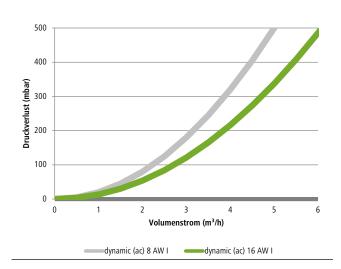




Abb. 27: Einsatzgrenzen Aktiv Kühlen

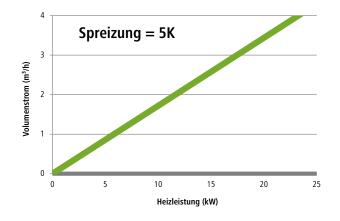

12.5. Druckverlust

Abb. 28: Druckverlust-Diagramm

12.6. Durchfluss Pufferladekreis

Abb. 29: Durchfluss bei 5K Spreizung

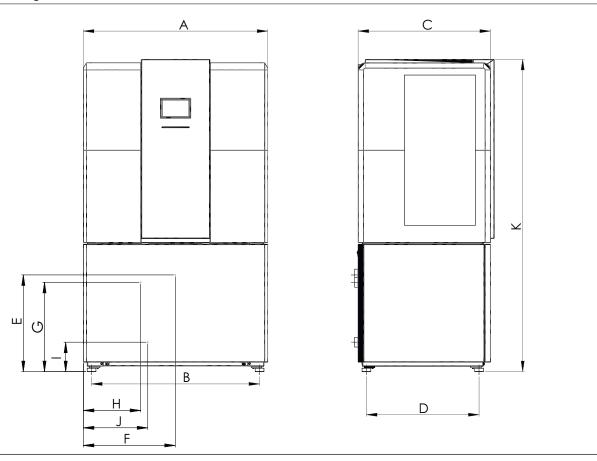
12.7. Geräuschpegel

Schalldruckpegel für Innenaufstellung						
		x-change® dynamic (ac)				
Entfernung		8 AW I	16 AW I			
		W20346	W20347			
		W20348	W20349			
1 m	dB (A)	46,8 / 42,6*	49,8 / 45,6*			
2 m	dB (A)	40,8 / 36,6*	43,8 / 39,6*			
5 m	dB (A)	32,8 / 28,6*	35,8 / 31,6*			

* Absenkbetrieb

10 m

dB (A)


Grundlage der Schalldaten ist der Betriebspunkt A7/W55 bei einer Verdichterdrehzahl von 30 rps bei der x-change® dynamic 8 AW I und 25 rps bei der x-change® dynamic 16 AW I.

26,8 / 22,6*

29,8 / 25,6*

12.8. Abmessungen

Abb. 30: Abmessungen Gehäuse

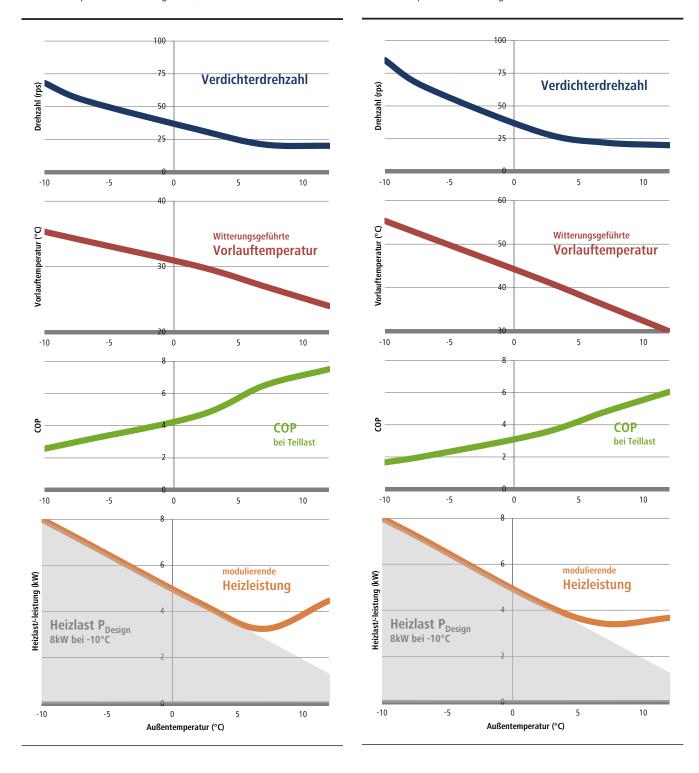
Abmessungen Gehäuse		
	Maße in mm	
A	1045	
В	952	
С	770	
D	638	
E (Kondensatablauf)	548	
F (Kondensatablauf)	521	
G (WP-Vorlauf)	506	
H (WP-Vorlauf)	325	
I (WP-Rücklauf)	167	
J (WP-Rücklauf)	365	
K (Höhe)	1770	

12.9. Leistungsparameter

12.9.1. Leistungsdaten

			x-change [®] dynamic (ac)	
yp- und Verka rtikelnummer	ufsbezeichnung		8 AW I W20246 W20248	16 AW I W20347 W20249
eistungsdaten				
A+10/W35	Verdichterzahl	rps	25	20
	Heizleistung	kW	4,87	6,52
	Leistungsaufnahme	kW	0,90	1,22
	Leistungszahl (COP)	-	5,41	5,34
	Kälteleistung	kW	3,97	5,30
A+7/W35	Verdichterzahl	rps	25	20
	Heizleistung	kW	4,91	6,08
	Leistungsaufnahme	kW	0,99	1,24
	Leistungszahl (COP)	-	4,95	4,90
	Kälteleistung	kW	3,92	4,84
A+2/W35	Verdichterzahl	rps	34	33
	Heizleistung	kW	5,69	8,76
	Leistungsaufnahme	kW	1,38	2,08
	Leistungszahl (COP)	-	4,12	4,21
	Kälteleistung	kW	4,31	6,68
A-7/W35	Verdichterzahl	rps	50	64
	Heizleistung	kW	6,55	12,69
	Leistungsaufnahme	kW	2,12	4,15
	Leistungszahl (COP)	-	3,09	3,06
	Kälteleistung	kW	4,43	8,54
A-15/W35	Verdichterzahl	rps	80	90
	Heizleistung	kW	7,40	13,45
	Leistungsaufnahme	kW	3,31	5,68
	Leistungszahl (COP)	-	2,24	2,37
	Kälteleistung	kW	4,09	7,77
A+7/W45	Verdichterzahl	rps	30	25
	Heizleistung	kW	5,27	7,42
	Leistungsaufnahme	kW	1,47	2,03
	Leistungszahl (COP)	-	3,59	3,66
	Kälteleistung	kW	3,80	5,39
A+20/W55	Verdichterzahl	rps	40	25
	Heizleistung	kW	8,71	9,22
	Leistungsaufnahme	kW	2,35	2,44
	Leistungszahl (COP)	-	3,71	3,78

			x-change® (dynamic (ac)
yp- und Verkaufsbezeichnung rtikelnummer			8 AW I W20246 W20248	16 AW I W20347 W20249
	Kälteleistung	kW	6,36	6,78
A+7/W55	Verdichterzahl	rps	30	25
	Heizleistung	kW	4,78	7,07
	Leistungsaufnahme	kW	1,69	2,48
	Leistungszahl (COP)	-	2,83	2,85
	Kälteleistung	kW	3,09	4,59
A-7/W55	Verdichterzahl	rps	50	70
	Heizleistung	kW	5,58	12,71
	Leistungsaufnahme	kW	2,78	6,07
	Leistungszahl (COP)	-	2,01	2,09
	Kälteleistung	kW	2,80	6,64

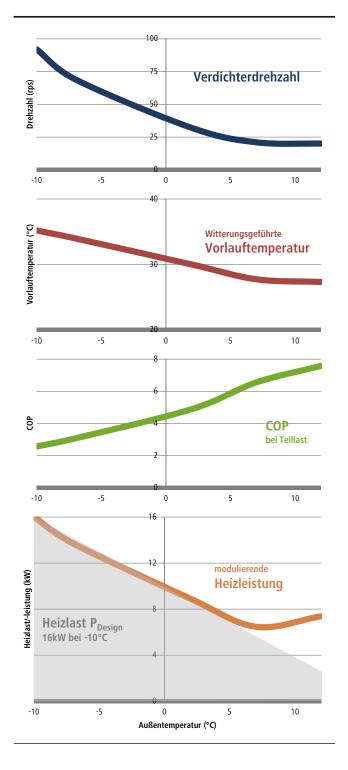

12.9.2. Teillastverhalten

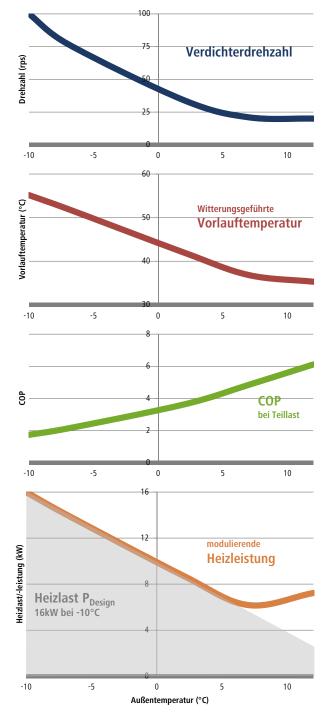
x-change dynamic (ac) 8 AW I

- $\blacksquare \ P_{Design} = 8kW$
- Mittleres Klima
- Niedertemperaturanwendung (35°C)

x-change dynamic (ac) 8 AW I

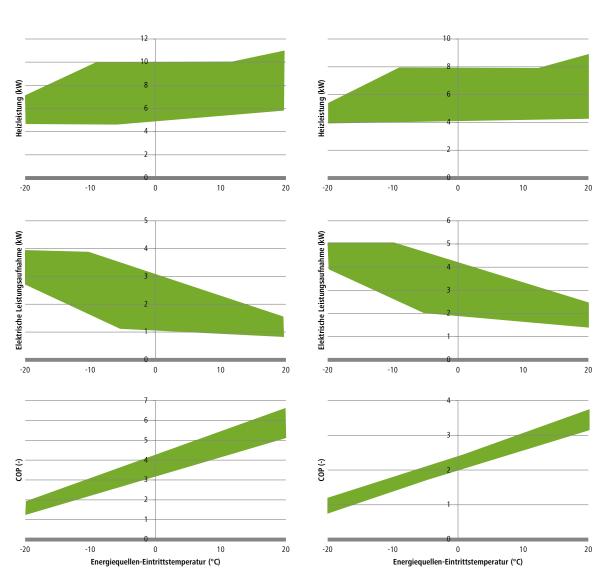
- ightharpoonup $P_{Design} = 8kW$
- Mittleres Klima
- Mitteltemperaturanwendung (55°C)

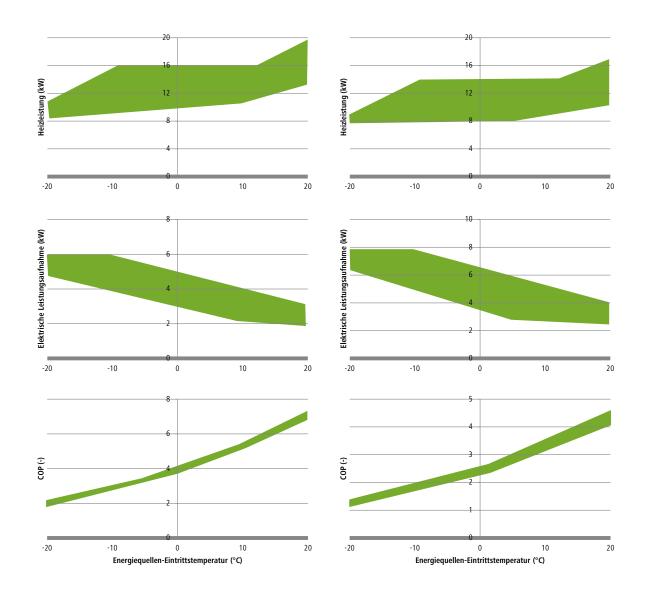



x-change dynamic (ac) 16 AW I

- $\blacksquare \ P_{Design} = 16kW$
- Mittleres Klima
- Niedertemperaturanwendung (35°C)

x-change dynamic (ac) 16 AW I


- $P_{Design} = 16kW$
- Mittleres Klima
- Mitteltemperaturanwendung (55°C)


12.9.3. Modulationsbereich

Vorlauftemperatur Wärmepumpe 35 °C

Vorlauftemperatur Wärmepumpe 55 °C

12.10. Angaben zur F-Gase-Verordnung

Die Wärmepumpe beinhaltet fluorierte Treibhausgase. Wenn Treibhausgase in die Atmosphäre gelangen, absorbieren sie einen Teil der von der Erde ausgehenden Infrarotstrahlung, die ansonsten in das Weltall entweichen würde. Diese Stoffe reflektieren die Infrarotstrahlung und erwärmen somit die Erde zusätzlich zur Sonne. Deshalb ist überaus wichtig, dass keine fluoriden Gase entweichen und der Umgang mit ihnen überaus sparsam und vorsichtig ist.

- Verwendetes Kältemittel: R410A
- Ozonabbaupotenzial (ODP) 0 nach EN 378-1, Stand 2012
- Treibhauspotenzial (GWP) 1980 kg CO₂ nach EN 378-1, Stand 2012 (2088 kg CO₂ nach 4. IPCC-Report).

Das Treibhauspotenzial wird beim Kältemittel auf Basis des Stoffes CO_2 (GWP = 1) für einen Zeithorizont von 100 Jahren angegeben, was bedeutet, dass das Kältemittel R410A mit einem GWP-Wert von 1.980 CO_2 e (nach EN 378-1, Stand 2012) ein 1.980-mal größeres Treibhauserwärmungspotenzial als CO_2 besitzt.

13. Zubehör

13.1. Zubehör

W40328 Außentemperaturfühler für die x-change ® dynamic AWI

Temperaturfühler in Gehäuse zur Montage an der Fassade und zur Erfassung der genauen Außenlufttemperatur ohne Beeinflussung durch direkte Sonneneinstrahlung. Der Außentemperaturfühler ist im Lieferumfang der Wärmepumpe enthalten.

Fühlertyp: NTC 10kΩ

Messbereich: -50°C bis 105°C

W40329 Temperaturfühler für die x-change ® dynamic AWI

Standardtemperaturfühler für die Wärmepumpensteuerung.

Fühlertyp: NTC 10kΩ

Messbereich: -50°C bis 105°C

W40409 Luftkanal, Adapter Ansaugseite

Adapter aus EPP für die Ansaugseite der x-change[®] dynamic (ac) AW I Wärmepumpe.

W40410 Luftkanal, Adapter Ausblasseite

Adapter aus EPP für die Ausblasseite der x-change[®] dynamic (ac) AW I Wärmepumpe.

W40022 Luftkanal, gerade

Luftkanal aus EPP, Länge 1m

W40024 Luftkanal, Bogen

90° Bogen aus EPP links/rechts für die Ausblasseite.

W40025 Luftkanal, Stegplatte

Zur Erweiterung der Anschlussmaße von W40022, Länge 1m.

W40027 Luftkanal, Wetterschutzgitter Ansaugseite

W40028 Luftkanal, Wetterschutzgitter Ausblasseite

W40032 Luftkanal, Befestigungsset

Befestigungsset für die Wand- und Deckenmontage.

W40033 Luftkanal, Längenanpassungsset

W40049 Luftkanal, Klebeband

14. Anhang

14.1. EG-Konformitätserklärung

Abb. 31: EG-Konformitätserklärung

EU-Konformitätserklärung

für die CE-Kennzeichnung innerhalb der Europäischen Union

Kermi GmbH

Hiermit erklären wir, dass nachfolgend aufgeführte Produkte:

W20290 Kermi x-change dynamic 8 AW E W20346 Kermi x-change dynamic 8 AW I W20291 Kermi x-change dynamic 16 AW E W20347 Kermi x-change dynamic 16 AW I

W20362 Kermi x-change dynamic ac 8 AW E
W20348 Kermi x-change dynamic ac 8 AW I
W20363 Kermi x-change dynamic ac 16 AW E
W20349 Kermi x-change dynamic ac 16 AW I

den grundlegenden Anforderungen der einschlägigen EU-Richtlinien entsprechen, vorausgesetzt dass die Produkte bestimmungsgemäß Verwendung finden.

Zum Nachweis entsprechend wurden folgende EU-Richtlinien herangezogen:

Niederspannungsrichtlinie 2014/35/EU

EMV- Richtlinie 2014/30/EU

Druckgerätrichtlinie 2014/68/EU

Maschinen Richtlinie 2006/42/EU

Angewendete harmonisierte Normen, insbesondere:

-EN 378 -EN 60529 -EN 60335-1 -EN 60335-2-40
-EN 61000-3-2 -EN 61000-3-3 -EN 61000-3-11 -EN 61000-3-12
-EN 55014-1 -EN 14511-2 -EN 14511-3 -EN 14511-4

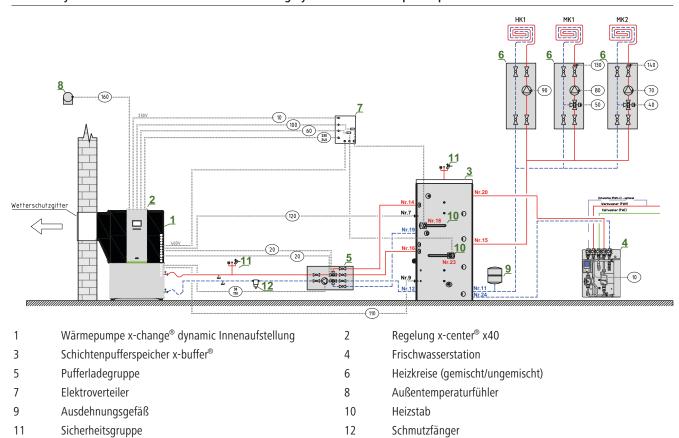
-EN 14825 -DIN 8975 (D) -DIN 8901 (D)

Plattling, 21. Nov. 2017

Alexander Kaiß Domihik Lampert

GF Kermi GmbH Leiter RTI

Kermi GmbH - Pankofen-Bahnhof 1 · 94447 Plattiling · GERMANY · Tel. +49 9931 501-0 · Fax +49 9931 3075 · www.kermi.de Vorsitzender des Aufsichtsrates; Alexander von Witzleben


Geschäftsführer: Knut Bartsch (Vorsitzender) · Dr. Klaus-Dieler Gloe · Alexander Kaiß

Sitz der Gesellschaft: Pankofen-Plattling - Handelsregister Deggendorf HRB-Nr. 0127 - UstlD DE 811129898

14.2. Hydraulikschemen

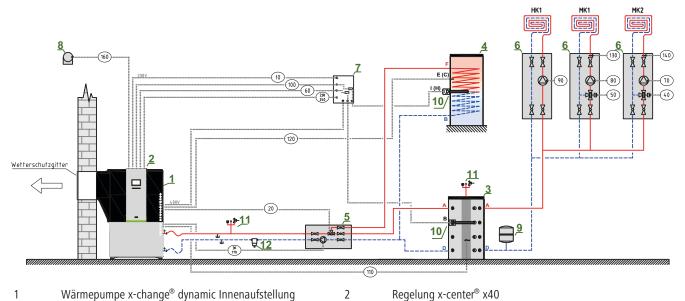

Dieses Schema ist ein grundlegendes Beispiel, sicherheitstechnische Einrichtungen sind gemäß den technischen Richtlinien, Normen und Verordnungen auszulegen und einzubauen. Die fachliche Planung wird dadurch nicht ersetzt und muss zwingend durchgeführt werden!

Abb. 32: Hydraulikschema 1 - Anschluss an das Heizungssystem mit Schichtenpufferspeicher

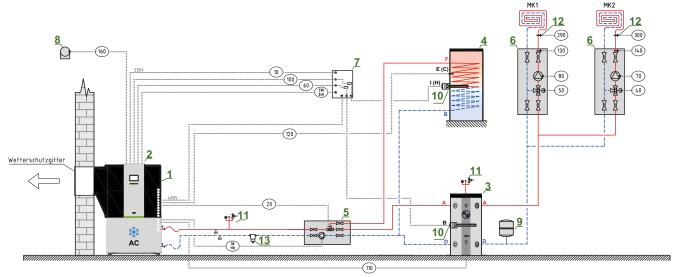
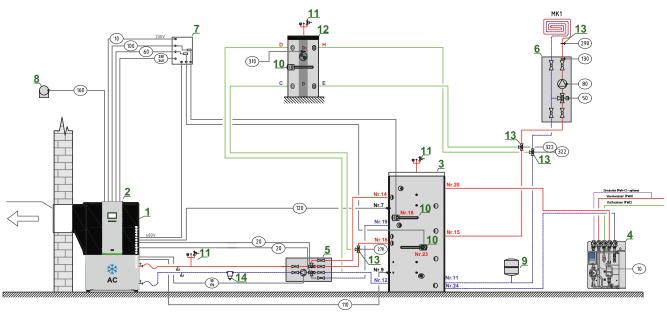

01/2023

Abb. 33: Hydraulikschema 2 - Anschluss an das Heizungssystem mit Trinkwasserspeicher und Heizungsspeicher

- 1 Wärmepumpe x-change® dynamic Innenaufstellung 2 Regelung x-cer 3 x-buffer® compact 4 x-buffer® fresh
- Pufferladegruppe
 Heizkreise (gemischt/ungemischt)
 Elektroverteiler
 Außentemperaturfühler
- 9 Ausdehnungsgefäß 10 Heizstab 11 Sicherheitsgruppe 12 Schmutzfänger


Abb. 34: Hydraulikschema 3 - Anschluss an das Heizungssystem mit Trinkwasserspeicher und Heizungs-/ Kühlspeicher

- 1 Wärmepumpe x-change® dynamic Innenaufstellung
- 3 x-buffer® compact cool5 Pufferladegruppe
- 7 Elektroverteiler
- 9 Ausdehnungsgefäß
- 11 Sicherheitsgruppe
- 13 Schmutzfänger

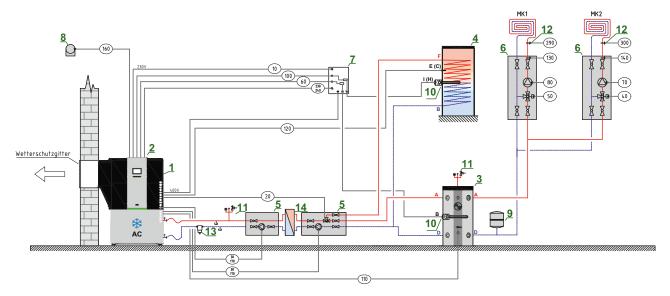

- 2 Regelung x-center® x40
- 4 x-buffer® fresh
- 6 Heizkreise (gemischt/ungemischt)
- 8 Außentemperaturfühler
- 10 Heizstab
- 12 Taupunktwächter

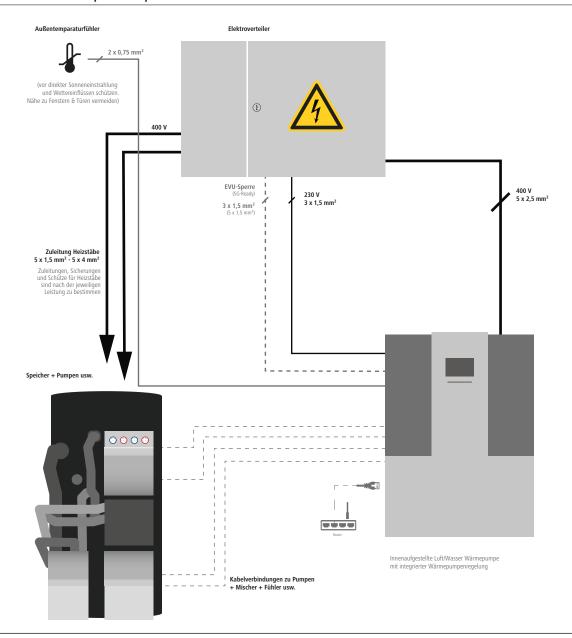
Abb. 35: Hydraulikschema 4

1	Wärmepumpe x-change® dynamic Innenaufstellung	2	Regelung x-center® x40
3	Schichtenpufferspeicher x-buffer®	4	Frischwasserstation
5	Pufferladegruppe	6	Heizkreise (gemischt/ungemischt)
7	Elektroverteiler	8	Außentemperaturfühler
9	Ausdehnungsgefäß	10	Heizstab
11	Sicherheitsgruppe	12	x-buffer compact cool®
13	Umschaltventil	14	Schmutzfänger

Abb. 36: Hydraulikschema 5

1	Wärmepumpe x-change® dynamic Innenaufstellung	2	Regelung x-center® x40
3	x-buffer compact cool®	4	x-buffer fresh®
5	Pufferladegruppe	6	Heizkreise (gemischt/ungemischt)
7	Elektroverteiler	8	Außentemperaturfühler
9	Ausdehnungsgefäß	10	Heizstab
11	Sicherheitsgruppe	12	Taupunktwächter
13	Schmutzfänger	14	Zwischenkreiswärmetauscher

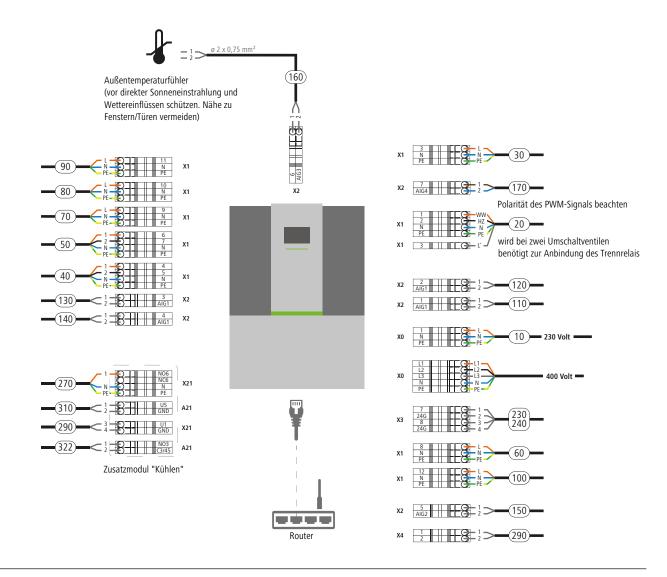
14.3. Klemmleistenbelegung


Die Klemmenbezeichnung beziehen sich auf den x-center® x40.

Pos	Klemme	Anschlussort	Beschreibung	
10	Х0	1	Spannungsversorgu	ing 230 V
		N	_	
		PE	_	
20	X1	1	TWE	Umschaltventil Heizen / TWE
		2	Heizen	
		N		
		PE	_	
30	X1	3	Pufferladepumpe	
30	٨١	N	- -	
			_	
		PE	6.11: 0	W. L. 1992 (
40	X1	4	Schließen	Mischer MK2 (max. 2A, 230 V, 50 Hz)
		5	Öffnen	
		N	_	
		PE		
50	X1	6	Schließen	Mischer MK1 (max. 2A, 230 V, 50 Hz)
		7	Öffnen	
		N	_	
		PE		
60	X1	8	Ansteuerung bause	itiges Schütz KM1 (externer Wärmeerzeuger 1 (Standard TWE))
		N		
70	X1	9	Umwälzpumpe MK2	2
		N	_	
		PE		
80	X1	10	Umwälzpumpe MK′	1
		N	_	
		PE		
90	X1	11	Umwälzpumpe HK	
		N PE	_	
100	X1	12	Anstauarung hausa	itiges Schütz KM2 (externer Wärmeerzeuger 1 (Standard Heizen))
100	ΛI	N	- Anstederding badse	itiges Schutz Kiviz (externer wanneerzeuger 1 (Standard Heizen))
101	V4		A	::::
101	X1	13	- Ansteuerung bause	itiges Schütz KM3 (externer Wärmeerzeuger 3))
		N		
102	X1	14	Universalausgang (ı -	nutzbar über Szenensteuerung)
		N DE	_	
110		PE	Using Tanan	and of the AITC DAY
110	X2	1	пеіzwasser - Tempe -	eraturfühler (NTC, B1)
		AIG1		(1)
120	X2	2	Trinkwasser - Temp	eraturfühler (NTC, B2)
		AIG1		
130	X2	3	_ Vorlauftemperaturfi _	ühler MK1 (NTC, B3)
		AIG1		

Pos	Klemme	Anschlussort	Beschreibung
140	X2	4	Vorlauftemperaturfühler MK2 (NTC, B4)
		AIG1	
150	X2	5	Stromzähler S0-Schnittstelle
		AIG2	
160	X2	6	Außentemperaturfühler (NTC, B5)
		AIG3	
170	X2	7	Regelsignal Pufferladepumpe (PWM; 0 - 10 V)
		AIG4	
180	Х3	1	Überlastsignal externer Wärmeerzeuger TWE
		DIG1	
190	Х3	2	Überlastsignal externer Wärmeerzeuger Heizen
		DIG1	
200	Х3	4	Digitaleingang 1 (verwendbar für Szenenprogrammierung)
		DIG1	
210	Х3	5	Störsignal Pufferladepumpe
		24G	
220	Х3	6	Digitaleingang 2 (verwendbar für Szenenprogrammierung)
		24G	
230	Х3	7	Smart Grid1-Signal / EVU-Sperre
		24G	
240	Х3	8	Smart Grid2-Signal
		24G	
270	X21	N06	3-Wege-Umschaltventil (Kühlen)
		GND	
280	A21	U3	Taupunktwächter HK
		GND	
290	X21	U1	Taupunktwächter MK1
		GND	
300	A21	U2	Taupunktwächter MK2
		GND	
310	A21	U5	Kühlspeichertemperatur (NTC, B21)
		GND	
320	A21	NO1	Beladepumpe Kühlen
		GND	
330	A21	U7	Beladepumpe Kühlen Steuersignal (PWM)
		GND	_
322	A21	NO3	potentialfreier Change-Over Ausgang MK1 (wird über Szene definiert)
		GND	-
323	A21	NO4	potentialfreier Change-Over Ausgang MK2 (wird über Szene definiert)
		GND	
324	A21	NO5	potentialfreier Change-Over Ausgang HK (wird über Szene definiert)
		GND	
		GND	

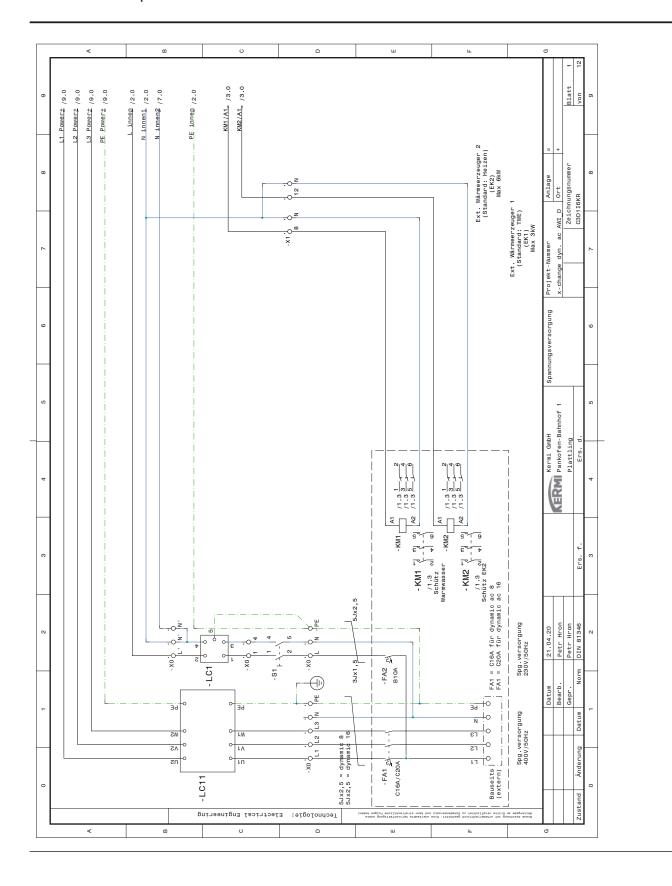
14.4. Elektroinstallationsplan


Abb. 37: Elektroinstallationsplan mit Speicherkombination

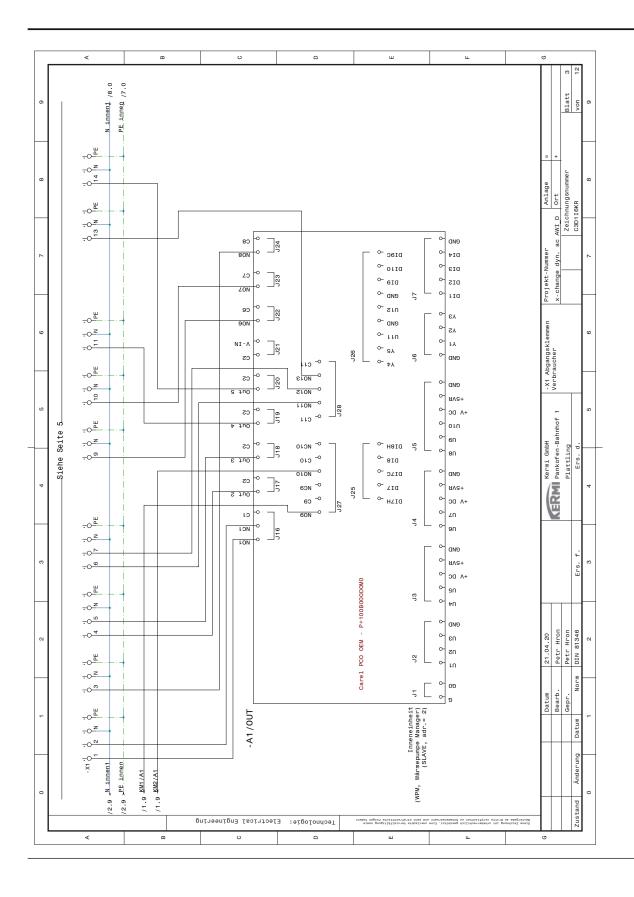
Achtung: Hierbei handelt es sich lediglich um eine Hilfestellung für den Elektroinstallateur. Je nach Anwendungsfall, Einsatzgebiet, regionalen Vorschriften, Kabellängen, Verlegeart usw. muss der Elektroinstallateur nach wie vor die Elektroinstallation selbst bestimmen.

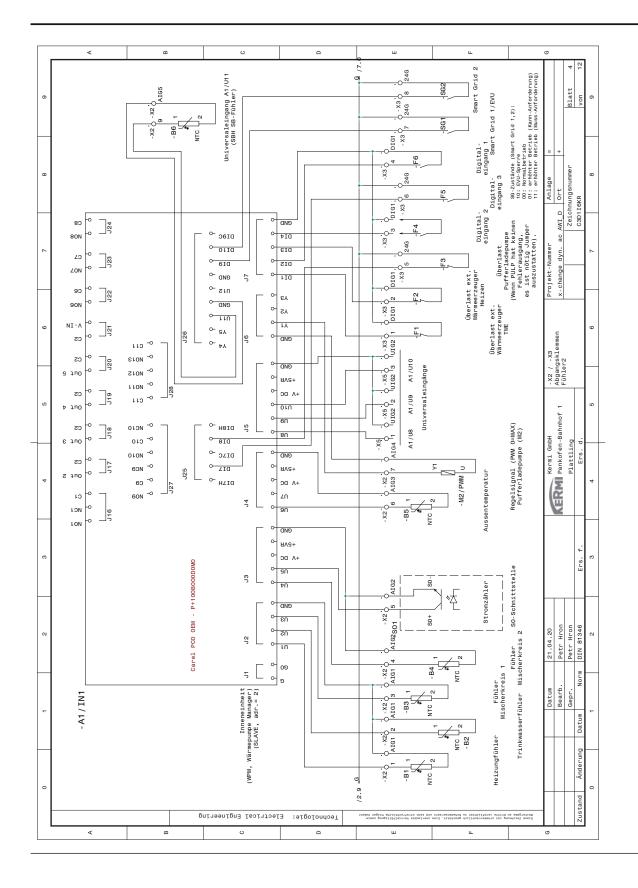
14.5. Elektroverdrahtungsplan

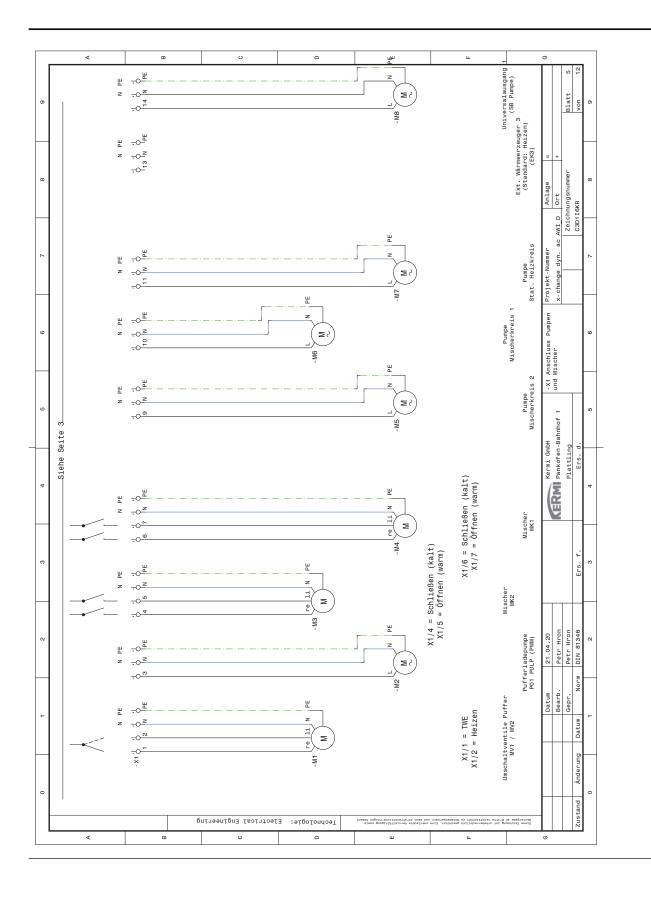
Abb. 38: Elektroverdrahtungspaln

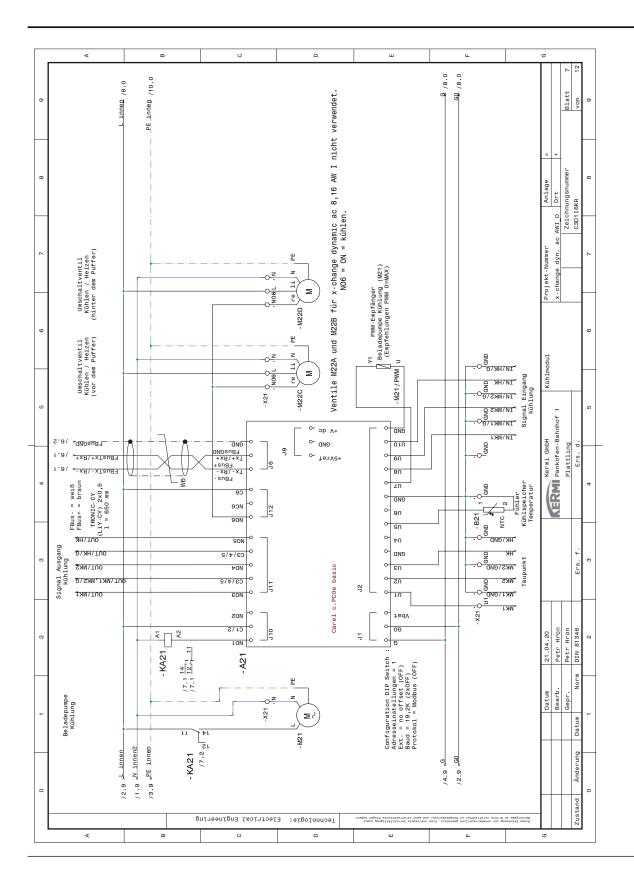

Heizkreise			
Position	Anschlußort	Beschreibung	Abbildung
	Mischer	230 Volt	<u> </u>
40	Mischerkreis 2	max. 1 A	(M) - 2 -
		4 x 1,5 mm ²	PE P
	Mischer	230 Volt	O = 1 =
50	Mischerkreis 1	max. 1 A	(M) – 2 –
		4 x 1,5 mm ²	PE N
	Pumpe	230 Volt	_ L
(70)	Mischerkreis 2	max. 1 A	() – N —
		3 x 1,5 mm ²	— PE —

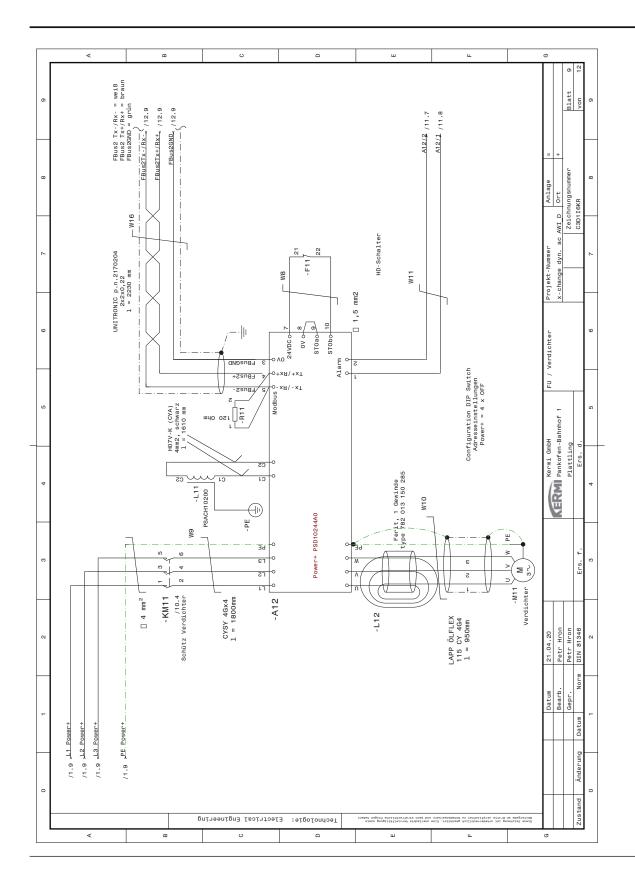
Heizkreise			
Position	Anschlußort	Beschreibung	Abbildung
00	Pumpe	230 Volt	_ L
80	Mischerkreis 1	max. 1 A	
		3 x 1,5 mm ²	PE P
	Pumpe	230 Volt	_ L
90	Statischer Heizkreis	max. 1 A	
		3 x 1,5 mm ²	✓ – PE ✓
(100)	Temperaturfühler	2 x 0,75 mm ²	n - 1
(130)	Vorlauf Mischerkreis 1		
	Temperaturfühler	2 x 0,75 mm ²	0 -1-
(140)	Vorlauf Mischerkreis 2		
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	71. 0		
Zusatzmodul "Kü Position	inien" Anschlußort	Beschreibung	Abbildung
Position			Abbildung
(270)	3-Wege Umschaltventil Kühlen	3 x 1,5 mm ²	M = 1
	(wird nur bei Kühlfunktion benötigt)		PE
	Temperaturfühler	2 x 0,75 mm ²	
(310)	Kühlspeicher	2 X 0,73 111111	
	Taupunktwächter	4 x 0,75 mm ²	[24 V] - 1 -
290	Mischerkreis 1		$\bigcirc +24 \text{ V}$ $\bigcirc -1$ $\bigcirc 0 \text{ V}$
	(wird nur bei Kühlfunktion benötigt)		- 3
	Change-Over-Ausgang (CO)	2 x 0,75 mm ²	
(322)	Kühlsignal Mischer 1		(((1
	Umschaltung Heizen/Kühlen		** - 2 -
Pufferbeladung			
Position	Anschlußort	Beschreibung	Abbildung
20	1 x Umschaltventil	230 Volt	~WW -
20	Warmwasser <-> Heizung	max. 1 A	HZ - (M)
		4 x 1,5 mm ²	PE PE
20	2 x Umschaltventil	230 Volt	@ ¬ r • @
20	Warmwasser <-> Heizung	max. 1 A	2428 7 111 7
		5 x 1,5 mm²	WW Auf. (W) W2 HZ Ab

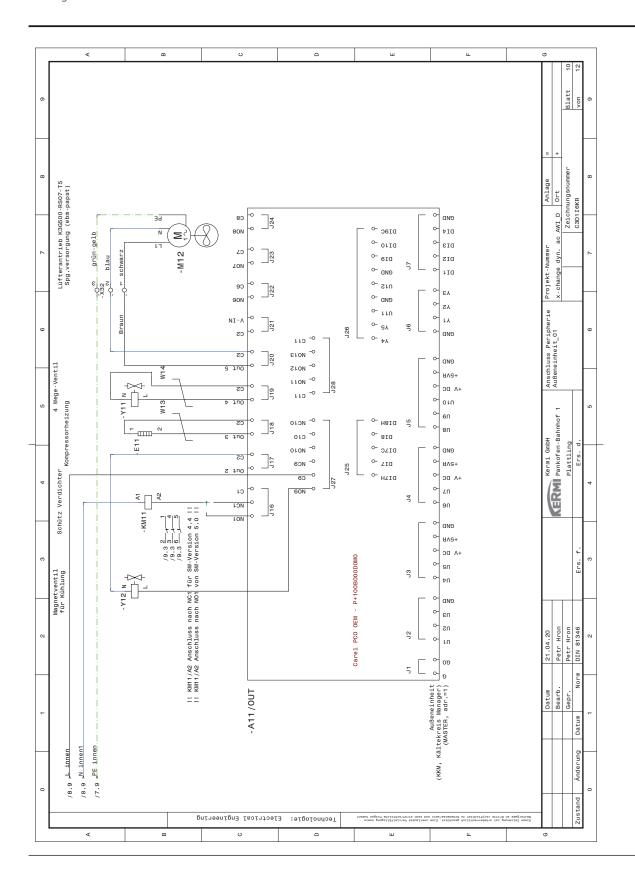

ufferbeladun	g		
Position	Anschlußort	Beschreibung	Abbildung
30	Pumpe	230 Volt	
30	Pufferbeladung (PWM)	max. 6 A	PE -
		3 x 1,5 mm ²	
170	Pumpe	2 x 0,75 mm ² geschirmt	1-
170	Pufferbeladung Steuersignal PWM		2 -
	PWM Typ X (Invers) -0% PWM-Signal $=100\%$		
	Pumpendrehzahl		
(110)	Temperaturfühler	2 x 0,75 mm ²	- 1 - ſ
110	Heizung		
400	Temperaturfühler	2 x 0,75 mm ²	_ 1 _ ſ
120	Warmwasser		2
uleitungen /	Elektroverteiler		
Position	Anschlußort	Beschreibung	Abbildung
(10)	Spannungsversorgung	Sicherung 1-Phasig	_ ! - [_
10	230 Volt – Steuerung Wärmepumpe	B10A	PE bausei
	50 Hz	3 x 1,5 mm ²	
\triangle	Spannungsversorgung	Sicherung 3-Phasig	<u></u>
\'\	400 Volt – Leistung Wärmepumpe	Dynamic 8 AWE (AC) C16A 3-Phasig	
	50 Hz / Auf Drehfeld achten!	Dynamic 16 AWE (AC)C20A 3-Phasig	N - bause
		5 x 2,5 mm ²	PE - bause
	Ansteuerung 2. Wärmeerzeuger	Schütz 3-Phasig	_ L1 = [
60	Warmwasser	230 V-Ansteuerung	A1 L
		3 x 1,5 mm ²	N - L ba
100	Ansteuerung 2. Wärmeerzeuger	Schütz 3-Phasig	L1 =
100	Heizung	230 V-Ansteuerung	A1 1 A2 1
		3 x 1,5 mm ²	N PE Da
150	SO-Zähler - erfasst die überschüssige PV-	2 x 0,75 mm ²	
(150)	Energie		
	(mit Wirkleistungsübermittlung und Rücklaufsper-		
	re)		
230	EVU-Signal - Potenzialfreier Schließer	4 x 0,75 mm ²	1-5
230 240	(Freigabe wenn Kontakt geschlossen)		3 = bausets

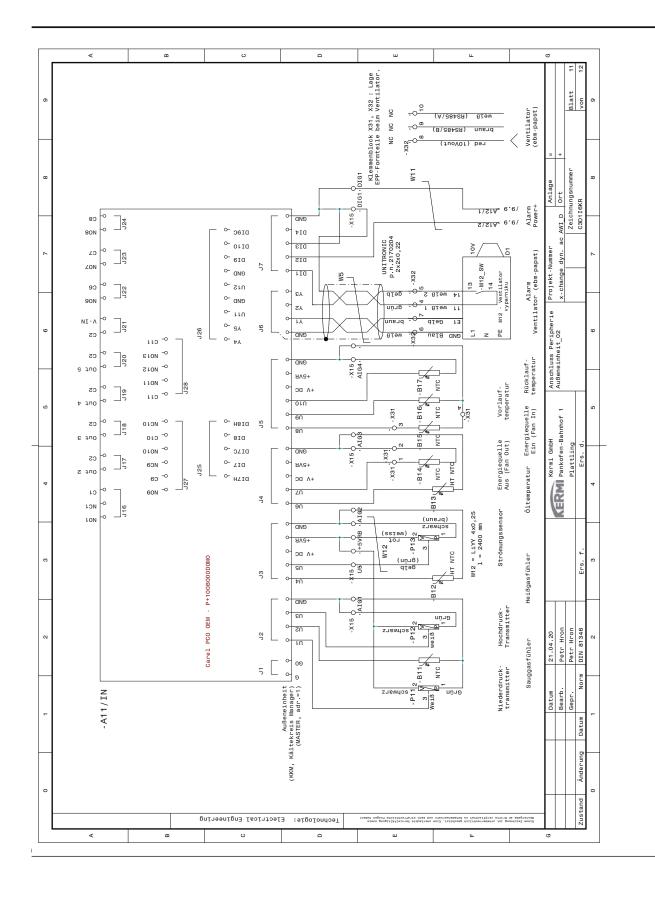

SG-Ready-Signal - optional (siehe Montage- und Bedienungsanleitung)

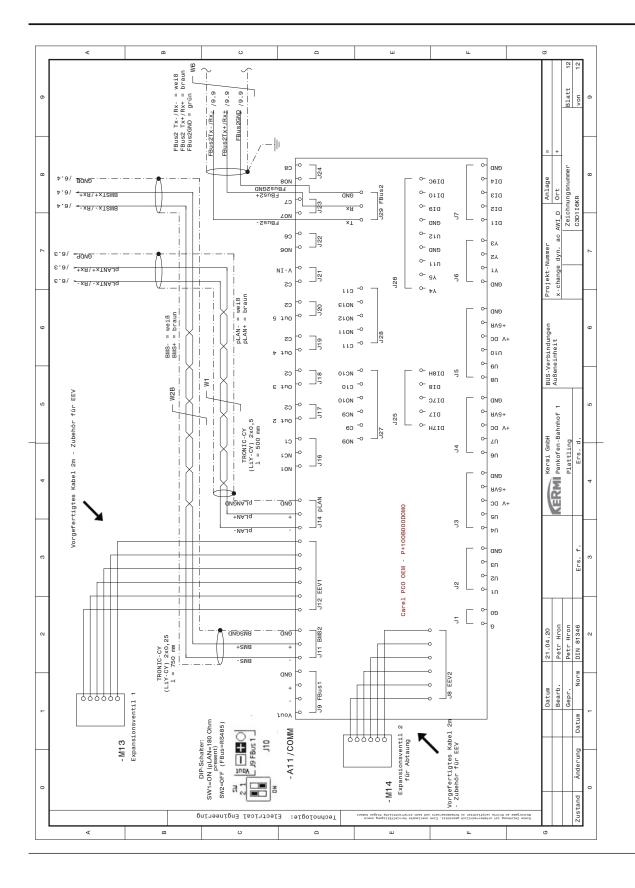

14.6. Elektroschaltpläne











Kermi GmbH Pankofen-Bahnhof 1 94447 Plattling GERMANY

Tel. +49 9931 501-0 Fax +49 9931 3075 www.kermi.de / www.kermi.at info@kermi.de